Cargando…

Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI

Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of c...

Descripción completa

Detalles Bibliográficos
Autores principales: McCarthy, Jillian, Borroni, Barbara, Sanchez‐Valle, Raquel, Moreno, Fermin, Laforce, Robert, Graff, Caroline, Synofzik, Matthis, Galimberti, Daniela, Rowe, James B., Masellis, Mario, Tartaglia, Maria Carmela, Finger, Elizabeth, Vandenberghe, Rik, de Mendonça, Alexandre, Tagliavini, Fabrizio, Santana, Isabel, Butler, Chris, Gerhard, Alex, Danek, Adrian, Levin, Johannes, Otto, Markus, Frisoni, Giovanni, Ghidoni, Roberta, Sorbi, Sandro, Jiskoot, Lize C., Seelaar, Harro, van Swieten, John C., Rohrer, Jonathan D., Iturria‐Medina, Yasser, Ducharme, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933323/
https://www.ncbi.nlm.nih.gov/pubmed/35118777
http://dx.doi.org/10.1002/hbm.25727
_version_ 1784671624031633408
author McCarthy, Jillian
Borroni, Barbara
Sanchez‐Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B.
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C.
Seelaar, Harro
van Swieten, John C.
Rohrer, Jonathan D.
Iturria‐Medina, Yasser
Ducharme, Simon
author_facet McCarthy, Jillian
Borroni, Barbara
Sanchez‐Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B.
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C.
Seelaar, Harro
van Swieten, John C.
Rohrer, Jonathan D.
Iturria‐Medina, Yasser
Ducharme, Simon
author_sort McCarthy, Jillian
collection PubMed
description Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
format Online
Article
Text
id pubmed-8933323
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-89333232022-03-24 Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI McCarthy, Jillian Borroni, Barbara Sanchez‐Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B. Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Butler, Chris Gerhard, Alex Danek, Adrian Levin, Johannes Otto, Markus Frisoni, Giovanni Ghidoni, Roberta Sorbi, Sandro Jiskoot, Lize C. Seelaar, Harro van Swieten, John C. Rohrer, Jonathan D. Iturria‐Medina, Yasser Ducharme, Simon Hum Brain Mapp Research Articles Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics. John Wiley & Sons, Inc. 2022-02-03 /pmc/articles/PMC8933323/ /pubmed/35118777 http://dx.doi.org/10.1002/hbm.25727 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
McCarthy, Jillian
Borroni, Barbara
Sanchez‐Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B.
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Frisoni, Giovanni
Ghidoni, Roberta
Sorbi, Sandro
Jiskoot, Lize C.
Seelaar, Harro
van Swieten, John C.
Rohrer, Jonathan D.
Iturria‐Medina, Yasser
Ducharme, Simon
Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title_full Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title_fullStr Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title_full_unstemmed Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title_short Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
title_sort data‐driven staging of genetic frontotemporal dementia using multi‐modal mri
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933323/
https://www.ncbi.nlm.nih.gov/pubmed/35118777
http://dx.doi.org/10.1002/hbm.25727
work_keys_str_mv AT mccarthyjillian datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT borronibarbara datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT sanchezvalleraquel datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT morenofermin datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT laforcerobert datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT graffcaroline datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT synofzikmatthis datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT galimbertidaniela datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT rowejamesb datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT masellismario datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT tartagliamariacarmela datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT fingerelizabeth datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT vandenbergherik datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT demendoncaalexandre datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT tagliavinifabrizio datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT santanaisabel datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT butlerchris datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT gerhardalex datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT danekadrian datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT levinjohannes datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT ottomarkus datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT frisonigiovanni datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT ghidoniroberta datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT sorbisandro datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT jiskootlizec datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT seelaarharro datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT vanswietenjohnc datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT rohrerjonathand datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT iturriamedinayasser datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT ducharmesimon datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri
AT datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri