Cargando…
Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of c...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933323/ https://www.ncbi.nlm.nih.gov/pubmed/35118777 http://dx.doi.org/10.1002/hbm.25727 |
_version_ | 1784671624031633408 |
---|---|
author | McCarthy, Jillian Borroni, Barbara Sanchez‐Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B. Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Butler, Chris Gerhard, Alex Danek, Adrian Levin, Johannes Otto, Markus Frisoni, Giovanni Ghidoni, Roberta Sorbi, Sandro Jiskoot, Lize C. Seelaar, Harro van Swieten, John C. Rohrer, Jonathan D. Iturria‐Medina, Yasser Ducharme, Simon |
author_facet | McCarthy, Jillian Borroni, Barbara Sanchez‐Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B. Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Butler, Chris Gerhard, Alex Danek, Adrian Levin, Johannes Otto, Markus Frisoni, Giovanni Ghidoni, Roberta Sorbi, Sandro Jiskoot, Lize C. Seelaar, Harro van Swieten, John C. Rohrer, Jonathan D. Iturria‐Medina, Yasser Ducharme, Simon |
author_sort | McCarthy, Jillian |
collection | PubMed |
description | Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics. |
format | Online Article Text |
id | pubmed-8933323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89333232022-03-24 Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI McCarthy, Jillian Borroni, Barbara Sanchez‐Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B. Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Butler, Chris Gerhard, Alex Danek, Adrian Levin, Johannes Otto, Markus Frisoni, Giovanni Ghidoni, Roberta Sorbi, Sandro Jiskoot, Lize C. Seelaar, Harro van Swieten, John C. Rohrer, Jonathan D. Iturria‐Medina, Yasser Ducharme, Simon Hum Brain Mapp Research Articles Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics. John Wiley & Sons, Inc. 2022-02-03 /pmc/articles/PMC8933323/ /pubmed/35118777 http://dx.doi.org/10.1002/hbm.25727 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles McCarthy, Jillian Borroni, Barbara Sanchez‐Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B. Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth Vandenberghe, Rik de Mendonça, Alexandre Tagliavini, Fabrizio Santana, Isabel Butler, Chris Gerhard, Alex Danek, Adrian Levin, Johannes Otto, Markus Frisoni, Giovanni Ghidoni, Roberta Sorbi, Sandro Jiskoot, Lize C. Seelaar, Harro van Swieten, John C. Rohrer, Jonathan D. Iturria‐Medina, Yasser Ducharme, Simon Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI |
title | Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
|
title_full | Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
|
title_fullStr | Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
|
title_full_unstemmed | Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
|
title_short | Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
|
title_sort | data‐driven staging of genetic frontotemporal dementia using multi‐modal mri |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933323/ https://www.ncbi.nlm.nih.gov/pubmed/35118777 http://dx.doi.org/10.1002/hbm.25727 |
work_keys_str_mv | AT mccarthyjillian datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT borronibarbara datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT sanchezvalleraquel datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT morenofermin datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT laforcerobert datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT graffcaroline datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT synofzikmatthis datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT galimbertidaniela datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT rowejamesb datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT masellismario datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT tartagliamariacarmela datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT fingerelizabeth datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT vandenbergherik datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT demendoncaalexandre datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT tagliavinifabrizio datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT santanaisabel datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT butlerchris datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT gerhardalex datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT danekadrian datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT levinjohannes datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT ottomarkus datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT frisonigiovanni datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT ghidoniroberta datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT sorbisandro datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT jiskootlizec datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT seelaarharro datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT vanswietenjohnc datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT rohrerjonathand datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT iturriamedinayasser datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT ducharmesimon datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri AT datadrivenstagingofgeneticfrontotemporaldementiausingmultimodalmri |