Cargando…
MicroRNA-128b mediates lipopolysaccharide-induced apoptosis via reactive oxygen species in human pulmonary microvascular endothelial cells
OBJECTIVES: This study aimed to explore the effects of miR-128b in the regulation of Lipopolysaccharide (LPS) induced apoptosis. METHODS: Human Pulmonary Microvascular Endothelial Cells (HPMECs) were transfected with an miR-128b inhibitor and stimulated with LPS for 24 h. FCM was performed to detect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933335/ https://www.ncbi.nlm.nih.gov/pubmed/35305480 http://dx.doi.org/10.1016/j.clinsp.2022.100020 |
Sumario: | OBJECTIVES: This study aimed to explore the effects of miR-128b in the regulation of Lipopolysaccharide (LPS) induced apoptosis. METHODS: Human Pulmonary Microvascular Endothelial Cells (HPMECs) were transfected with an miR-128b inhibitor and stimulated with LPS for 24 h. FCM was performed to detect apoptosis and Reactive Oxygen Species (ROS) production. In addition, miRNA and caspase-3 expression levels were determined using real-time quantitative polymerase chain reaction and western blotting. RESULTS: LPS significantly induced apoptosis and ROS production and upregulated miR-128b and caspase-3 expressions in HPMECs. However, LPS-induced effects were suppressed when an miR-128b inhibitor was used. Preincubation with NAC decreased the LPS-induced apoptosis of HPMECs. CONCLUSIONS: These effects were mediated by miR-128b via the caspase-3 pathway. |
---|