Cargando…
Agents for sequential learning using multiple-fidelity data
Sequential learning for materials discovery is a paradigm where a computational agent solicits new data to simultaneously update a model in service of exploration (finding the largest number of materials that meet some criteria) or exploitation (finding materials with an ideal figure of merit). In r...
Autores principales: | Palizhati, Aini, Torrisi, Steven B., Aykol, Muratahan, Suram, Santosh K., Hummelshøj, Jens S., Montoya, Joseph H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933401/ https://www.ncbi.nlm.nih.gov/pubmed/35304496 http://dx.doi.org/10.1038/s41598-022-08413-8 |
Ejemplares similares
-
Network analysis of synthesizable materials discovery
por: Aykol, Muratahan, et al.
Publicado: (2019) -
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Autonomous intelligent agents for accelerated materials discovery
por: Montoya, Joseph H., et al.
Publicado: (2020) -
Machine learning–accelerated design and synthesis of polyelemental heterostructures
por: Wahl, Carolin B., et al.
Publicado: (2021) -
Novel inorganic crystal structures predicted using autonomous simulation agents
por: Ye, Weike, et al.
Publicado: (2022)