Cargando…
Assessing radiomics feature stability with simulated CT acquisitions
Medical imaging quantitative features had once disputable usefulness in clinical studies. Nowadays, advancements in analysis techniques, for instance through machine learning, have enabled quantitative features to be progressively useful in diagnosis and research. Tissue characterisation is improved...
Autores principales: | Flouris, Kyriakos, Jimenez-del-Toro, Oscar, Aberle, Christoph, Bach, Michael, Schaer, Roger, Obmann, Markus M., Stieltjes, Bram, Müller, Henning, Depeursinge, Adrien, Konukoglu, Ender |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933485/ https://www.ncbi.nlm.nih.gov/pubmed/35304508 http://dx.doi.org/10.1038/s41598-022-08301-1 |
Ejemplares similares
-
The importance of feature aggregation in radiomics: a head and neck cancer study
por: Fontaine, Pierre, et al.
Publicado: (2020) -
QuantImage v2: a comprehensive and integrated physician-centered cloud platform for radiomics and machine learning research
por: Abler, Daniel, et al.
Publicado: (2023) -
Metal implants on abdominal CT: does split-filter dual-energy CT provide additional value over iterative metal artifact reduction?
por: Wichtmann, Hildegard M., et al.
Publicado: (2022) -
Integrating radiomics into holomics for personalised oncology: from algorithms to bedside
por: Gatta, Roberto, et al.
Publicado: (2020) -
Deep Learning-Based Retrieval System for Gigapixel Histopathology Cases and the Open Access Literature
por: Schaer, Roger, et al.
Publicado: (2019)