Cargando…

Improvement of water harvesting performance through collector modification in industrial cooling tower

Shortages of freshwater have become increasingly common around the world, and various studies have been conducted to solve this problem by collecting and reusing the water in nature or from factories and power plants that produce large fog plumes. Although the shape of a collection screen is strongl...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ji Yeon, Kang, Jong Hoon, Moon, Jong Woon, Jung, Sung Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933487/
https://www.ncbi.nlm.nih.gov/pubmed/35304555
http://dx.doi.org/10.1038/s41598-022-08701-3
Descripción
Sumario:Shortages of freshwater have become increasingly common around the world, and various studies have been conducted to solve this problem by collecting and reusing the water in nature or from factories and power plants that produce large fog plumes. Although the shape of a collection screen is strongly related to its harvesting performance, only flat meshes have been considered in previous studies, and research on the effects of collector structure shapes is severely lacking. In this study, we proposed modified collector structures improving harvesting performances in industrial cooling towers. The screen shape was modified in three steps. First, a concave shape was adopted for the mesh screen to increase the aerodynamic characteristics of the collection structure. Next, a sidewall was installed to collect additional fog from defected flows generated by the concave structure. Finally, to reduce loss during the draining of collected water droplets, the discharge direction of the fog flow was changed to follow the same direction as fog-laden flows in nature. Our results are expected to be useful for collector design in terms of increasing harvesting efficiency in various industrial fields in the future.