Cargando…
Arc and forearc rifting in the Tyrrhenian subduction system
The evolution of forearc and backarc domains is usually treated separately, as they are separated by a volcanic arc. We analyse their spatial and temporal relationships in the Tyrrhenian subduction system, using seismic profiles and numerical modelling. A volcanic arc, which included the Marsili vol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933539/ https://www.ncbi.nlm.nih.gov/pubmed/35304876 http://dx.doi.org/10.1038/s41598-022-08562-w |
Sumario: | The evolution of forearc and backarc domains is usually treated separately, as they are separated by a volcanic arc. We analyse their spatial and temporal relationships in the Tyrrhenian subduction system, using seismic profiles and numerical modelling. A volcanic arc, which included the Marsili volcano, was involved in arc-rifting during the Pliocene. This process led to the formation of an oceanic backarc basin (~ 1.8 Ma) to the west of the Marsili volcano. The eastern region corresponded to the forearc domain, floored by serpentinised mantle. Here, a new volcanic arc formed at ~ 1 Ma, marking the onset of the forearc-rifting. This work highlights that fluids and melts induce weakening of the volcanic arc region and drive the arc-rifting that led to the backarc basin formation. Later, the slab rollback causes the trench-ward migration of volcanism that led to the forearc- rifting under the control of fluids released from the downgoing plate. |
---|