Cargando…

Synthetic exposure with a CMOS camera for multiple exposure speckle imaging of blood flow

Speckle contrast imaging is an established technique to obtain relative blood flow maps over wide fields of view. A major improvement of the method relies on the acquisition of raw speckle images at different exposure times but requires simultaneous modulation of a laser pulse in duration and intens...

Descripción completa

Detalles Bibliográficos
Autores principales: Chammas, M., Pain, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933569/
https://www.ncbi.nlm.nih.gov/pubmed/35304556
http://dx.doi.org/10.1038/s41598-022-08647-6
Descripción
Sumario:Speckle contrast imaging is an established technique to obtain relative blood flow maps over wide fields of view. A major improvement of the method relies on the acquisition of raw speckle images at different exposure times but requires simultaneous modulation of a laser pulse in duration and intensity and precise synchronization with a camera. This complex instrumentation has limited the use of multiple exposure speckle imaging. We evaluate here the use of a CMOS camera for a simplified approach based on synthetic exposure images created from the sum of successive frames acquired at a 1 ms exposure time. Both methods have been applied to evaluate controlled flows in micro-channels. The contribution of noises to the speckle contrast have been quantified and compared. Dark, readout and shot noise contributions to the total contrast remain constant for modulated exposure, while all these contributions decrease with increasing exposure time for synthetic exposure. The relative contribution of noises to speckle contrast depends on the level of illumination and the exposure time. Guidelines for flow measurements and limitations of the use of a CMOS camera with a limited frame rate for synthetic exposure acquisition scheme are discussed. The synthetic exposure method is simple to implement and should facilitate the translation of multiple exposure speckle imaging to clinical set-ups.