Cargando…

DNA-based enzymatic systems and their applications

DNA strands with unique secondary structures can catalyze various chemical reactions and mimic natural enzymes with the assistance of cofactors, which have attracted much research attention. At the same time, the emerging DNA nanotechnology provides an efficient platform to organize functional compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Yunfei, Shang, Yingxu, Li, Na, Ding, Baoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933709/
https://www.ncbi.nlm.nih.gov/pubmed/35313688
http://dx.doi.org/10.1016/j.isci.2022.104018
Descripción
Sumario:DNA strands with unique secondary structures can catalyze various chemical reactions and mimic natural enzymes with the assistance of cofactors, which have attracted much research attention. At the same time, the emerging DNA nanotechnology provides an efficient platform to organize functional components of the enzymatic systems and regulate their catalytic performances. In this review, we summarize the recent progress of DNA-based enzymatic systems. First, DNAzymes (Dzs) are introduced, and their versatile utilities are summarized. Then, G-quadruplex/hemin (G4/hemin) Dzs with unique oxidase/peroxidase-mimicking activities and representative examples where these Dzs served as biosensors are explicitly elaborated. Next, the DNA-based enzymatic cascade systems fabricated by the structural DNA nanotechnology are depicted. In addition, the applications of catalytic DNA nanostructures in biosensing and biomedicine are included. At last, the challenges and the perspectives of the DNA-based enzymatic systems for practical applications are also discussed.