Cargando…
Identifiable Paths and Cycles in Linear Compartmental Models
We introduce a class of linear compartmental models called identifiable path/cycle models which have the property that all of the monomial functions of parameters associated to the directed cycles and paths from input compartments to output compartments are identifiable and give sufficient condition...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934029/ https://www.ncbi.nlm.nih.gov/pubmed/35305179 http://dx.doi.org/10.1007/s11538-022-01007-5 |
Sumario: | We introduce a class of linear compartmental models called identifiable path/cycle models which have the property that all of the monomial functions of parameters associated to the directed cycles and paths from input compartments to output compartments are identifiable and give sufficient conditions to obtain an identifiable path/cycle model. Removing leaks, we then show how one can obtain a locally identifiable model from an identifiable path/cycle model. These identifiable path/cycle models yield the only identifiable models with certain conditions on their graph structure and thus we provide necessary and sufficient conditions for identifiable models with certain graph properties. A sufficient condition based on the graph structure of the model is also provided so that one can test if a model is an identifiable path/cycle model by examining the graph itself. We also provide some necessary conditions for identifiability based on graph structure. Our proofs use algebraic and combinatorial techniques. |
---|