Cargando…
Automatic Non-Invasive Cough Detection based on Accelerometer and Audio Signals
We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patient’s bed, using its integrated accelerometer. The audio signals are captured simultaneously by the same...
Autores principales: | Pahar, Madhurananda, Miranda, Igor, Diacon, Andreas, Niesler, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934184/ https://www.ncbi.nlm.nih.gov/pubmed/35341095 http://dx.doi.org/10.1007/s11265-022-01748-5 |
Ejemplares similares
-
COVID-19 detection in cough, breath and speech using deep transfer learning and bottleneck features
por: Pahar, Madhurananda, et al.
Publicado: (2022) -
COVID-19 cough classification using machine learning and global smartphone recordings
por: Pahar, Madhurananda, et al.
Publicado: (2021) -
Automatic cough detection from realistic audio recordings using C-BiLSTM with boundary regression
por: You, Mingyu, et al.
Publicado: (2022) -
Automatic Recognition, Segmentation, and Sex Assignment of Nocturnal Asthmatic Coughs and Cough Epochs in Smartphone Audio Recordings: Observational Field Study
por: Barata, Filipe, et al.
Publicado: (2020) -
Cough Audio Analysis for COVID-19 Diagnosis
por: Kapoor, Teghdeep, et al.
Publicado: (2022)