Cargando…

Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability

Standard oral rapamycin (i.e. Rapamune®) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mTOR inhibitor has a narrow therapeutic window, numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hyd...

Descripción completa

Detalles Bibliográficos
Autores principales: Burke, Jacqueline A., Zhang, Xiaomin, Bobbala, Sharan, Frey, Molly A., Fuentes, Carolina Bohorquez, Haddad, Helena Freire, Allen, Sean D., Richardson, Reese A.K., Ameer, Guillermo A., Scott, Evan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934301/
https://www.ncbi.nlm.nih.gov/pubmed/35039683
http://dx.doi.org/10.1038/s41565-021-01048-2
_version_ 1784671821830815744
author Burke, Jacqueline A.
Zhang, Xiaomin
Bobbala, Sharan
Frey, Molly A.
Fuentes, Carolina Bohorquez
Haddad, Helena Freire
Allen, Sean D.
Richardson, Reese A.K.
Ameer, Guillermo A.
Scott, Evan A.
author_facet Burke, Jacqueline A.
Zhang, Xiaomin
Bobbala, Sharan
Frey, Molly A.
Fuentes, Carolina Bohorquez
Haddad, Helena Freire
Allen, Sean D.
Richardson, Reese A.K.
Ameer, Guillermo A.
Scott, Evan A.
author_sort Burke, Jacqueline A.
collection PubMed
description Standard oral rapamycin (i.e. Rapamune®) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mTOR inhibitor has a narrow therapeutic window, numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations. Here, we demonstrate that subcutaneous delivery via poly(ethylene glycol)-b-poly(propylene sulfide)(PEG-b-PPS) polymersome (PS) nanocarriers significantly alters rapamycin’s cellular biodistribution to repurpose its mechanism of action for tolerance instead of immunosuppression while minimizing side effects. While oral rapamycin inhibits naïve T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes (rPS) modulate antigen presenting cells in lieu of T cells significantly improving maintenance of normoglycemia in a clinically relevant, MHC-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of a rationally designed nanocarrier to re-engineer the immunosuppressive mechanism of a drug by controlling cellular biodistribution.
format Online
Article
Text
id pubmed-8934301
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-89343012022-07-17 Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability Burke, Jacqueline A. Zhang, Xiaomin Bobbala, Sharan Frey, Molly A. Fuentes, Carolina Bohorquez Haddad, Helena Freire Allen, Sean D. Richardson, Reese A.K. Ameer, Guillermo A. Scott, Evan A. Nat Nanotechnol Article Standard oral rapamycin (i.e. Rapamune®) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mTOR inhibitor has a narrow therapeutic window, numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations. Here, we demonstrate that subcutaneous delivery via poly(ethylene glycol)-b-poly(propylene sulfide)(PEG-b-PPS) polymersome (PS) nanocarriers significantly alters rapamycin’s cellular biodistribution to repurpose its mechanism of action for tolerance instead of immunosuppression while minimizing side effects. While oral rapamycin inhibits naïve T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes (rPS) modulate antigen presenting cells in lieu of T cells significantly improving maintenance of normoglycemia in a clinically relevant, MHC-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of a rationally designed nanocarrier to re-engineer the immunosuppressive mechanism of a drug by controlling cellular biodistribution. 2022-03 2022-01-17 /pmc/articles/PMC8934301/ /pubmed/35039683 http://dx.doi.org/10.1038/s41565-021-01048-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Burke, Jacqueline A.
Zhang, Xiaomin
Bobbala, Sharan
Frey, Molly A.
Fuentes, Carolina Bohorquez
Haddad, Helena Freire
Allen, Sean D.
Richardson, Reese A.K.
Ameer, Guillermo A.
Scott, Evan A.
Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title_full Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title_fullStr Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title_full_unstemmed Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title_short Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
title_sort subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934301/
https://www.ncbi.nlm.nih.gov/pubmed/35039683
http://dx.doi.org/10.1038/s41565-021-01048-2
work_keys_str_mv AT burkejacquelinea subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT zhangxiaomin subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT bobbalasharan subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT freymollya subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT fuentescarolinabohorquez subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT haddadhelenafreire subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT allenseand subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT richardsonreeseak subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT ameerguillermoa subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability
AT scottevana subcutaneousnanotherapyrepurposestheimmunosuppressivemechanismofrapamycintoenhanceallogeneicisletgraftviability