Cargando…
Predicting miRNA-disease associations via layer attention graph convolutional network model
BACKGROUND: MiRNA is a class of non-coding single-stranded RNA molecules with a length of approximately 22 nucleotides encoded by endogenous genes, which can regulate the expression of other genes. Therefore, it is very important to predict the associations between miRNA and disease. Predecessors de...
Autores principales: | Han, Han, Zhu, Rong, Liu, Jin-Xing, Dai, Ling-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934489/ https://www.ncbi.nlm.nih.gov/pubmed/35305630 http://dx.doi.org/10.1186/s12911-022-01807-8 |
Ejemplares similares
-
Identifying SM-miRNA associations based on layer attention graph convolutional network and matrix decomposition
por: Ni, Jie, et al.
Publicado: (2022) -
MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network
por: Niu, Yanqing, et al.
Publicado: (2022) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
por: Huang, Yu-An, et al.
Publicado: (2019) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020)