Cargando…
A Weakly Supervised Deep Learning Approach for Leakage Detection in Fluorescein Angiography Images
PURPOSE: The purpose of this study was to design an automated algorithm that can detect fluorescence leakage accurately and quickly without the use of a large amount of labeled data. METHODS: A weakly supervised learning-based method was proposed to detect fluorescein leakage without the need for ma...
Autores principales: | Li, Wanyue, Fang, Wangyi, Wang, Jing, He, Yi, Deng, Guohua, Ye, Hong, Hou, Zujun, Chen, Yiwei, Jiang, Chunhui, Shi, Guohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934548/ https://www.ncbi.nlm.nih.gov/pubmed/35262648 http://dx.doi.org/10.1167/tvst.11.3.9 |
Ejemplares similares
-
Deep learning for automated detection of neovascular leakage on ultra-widefield fluorescein angiography in diabetic retinopathy
por: Zhao, Peter Y., et al.
Publicado: (2023) -
Automatic Anterior Chamber Angle Classification Using Deep Learning System and Anterior Segment Optical Coherence Tomography Images
por: Li, Wanyue, et al.
Publicado: (2021) -
Segmentation of macular neovascularization and leakage in fluorescein angiography images in neovascular age-related macular degeneration using deep learning
por: Holomcik, David, et al.
Publicado: (2022) -
Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy
por: Zhao, Yitian, et al.
Publicado: (2015) -
Automated Detection of Vascular Leakage in Fluorescein Angiography – A Proof of Concept
por: Young, LeAnne H., et al.
Publicado: (2022)