Cargando…
GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants from whole-genome sequencing data
Non-coding variants have long been recognized as important contributors to common disease risks, but with the expansion of clinical whole genome sequencing, examples of rare, high-impact non-coding variants are also accumulating. Despite recent advances in the study of regulatory elements and the av...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934622/ https://www.ncbi.nlm.nih.gov/pubmed/35234913 http://dx.doi.org/10.1093/nar/gkac130 |
Sumario: | Non-coding variants have long been recognized as important contributors to common disease risks, but with the expansion of clinical whole genome sequencing, examples of rare, high-impact non-coding variants are also accumulating. Despite recent advances in the study of regulatory elements and the availability of specialized data collections, the systematic annotation of non-coding variants from genome sequencing remains challenging. Here, we propose a new framework for the prioritization of non-coding regulatory variants that integrates information about regulatory regions with prediction scores and HPO-based prioritization. Firstly, we created a comprehensive collection of annotations for regulatory regions including a database of 2.4 million regulatory elements (GREEN-DB) annotated with controlled gene(s), tissue(s) and associated phenotype(s) where available. Secondly, we calculated a variation constraint metric and showed that constrained regulatory regions associate with disease-associated genes and essential genes from mouse knock-outs. Thirdly, we compared 19 non-coding impact prediction scores providing suggestions for variant prioritization. Finally, we developed a VCF annotation tool (GREEN-VARAN) that can integrate all these elements to annotate variants for their potential regulatory impact. In our evaluation, we show that GREEN-DB can capture previously published disease-associated non-coding variants as well as identify additional candidate disease genes in trio analyses. |
---|