Cargando…
Development and Validation of a Risk Prediction Model for Venous Thromboembolism in Lung Cancer Patients Using Machine Learning
BACKGROUND: There is currently a lack of model for predicting the occurrence of venous thromboembolism (VTE) in patients with lung cancer. Machine learning (ML) techniques are being increasingly adapted for use in the medical field because of their capabilities of intelligent analysis and scalabilit...
Autores principales: | Lei, Haike, Zhang, Mengyang, Wu, Zeyi, Liu, Chun, Li, Xiaosheng, Zhou, Wei, Long, Bo, Ma, Jiayang, Zhang, Huiyi, Wang, Ying, Wang, Guixue, Gong, Mengchun, Hong, Na, Liu, Haixia, Wu, Yongzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934875/ https://www.ncbi.nlm.nih.gov/pubmed/35321110 http://dx.doi.org/10.3389/fcvm.2022.845210 |
Ejemplares similares
-
Machine learning predicts cancer-associated venous thromboembolism using clinically available variables in gastric cancer patients
por: Xu, Qianjie, et al.
Publicado: (2023) -
Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study
por: Sheng, Wenbo, et al.
Publicado: (2023) -
Development and validation of a risk prediction model for overall survival in patients with nasopharyngeal carcinoma: a prospective cohort study in China
por: Miao, Siwei, et al.
Publicado: (2022) -
Factor XI, a potential target for anticoagulation therapy for venous thromboembolism
por: Li, Tingting, et al.
Publicado: (2022) -
Protein S Deficiency and the Risk of Venous Thromboembolism in the Han Chinese Population
por: Wu, Yingying, et al.
Publicado: (2022)