Cargando…
Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury
BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most common complications in coronavirus disease 2019 patients suffering from acute lung injury (ALI). In ARDS, marked distortion of pulmonary architecture has been reported. The pulmonary lesions in ARDS include hemodynamic derang...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Pathologists and the Korean Society for Cytopathology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934996/ https://www.ncbi.nlm.nih.gov/pubmed/35220710 http://dx.doi.org/10.4132/jptm.2021.12.27 |
_version_ | 1784671951414886400 |
---|---|
author | Alzahrani, Badr Gaballa, Mohamed M. S. Tantawy, Ahmed A. Moussa, Maha A. Shoulah, Salma A. Elshafae, Said M. |
author_facet | Alzahrani, Badr Gaballa, Mohamed M. S. Tantawy, Ahmed A. Moussa, Maha A. Shoulah, Salma A. Elshafae, Said M. |
author_sort | Alzahrani, Badr |
collection | PubMed |
description | BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most common complications in coronavirus disease 2019 patients suffering from acute lung injury (ALI). In ARDS, marked distortion of pulmonary architecture has been reported. The pulmonary lesions in ARDS include hemodynamic derangements (such as alveolar edema and hemorrhage), vascular and bronchiolar damage, interstitial inflammatory cellular aggregations, and eventually fibrosis. Bleomycin induces ARDS-representative pulmonary damage in mice and rats; therefore, we used bleomycin model mice in our study. Recently, Toll-like receptor 9 (TLR9) was implicated in the development of ARDS and ALI. METHODS: In this study, we evaluated the efficiency of a TLR9 blocker (ODN2088) on bleomycin-induced pulmonary damage. We measured the apoptosis rate, inflammatory reaction, and fibroplasia in bleomycin- and bleomycin + ODN2088-treated mice. RESULTS: Our results showed a significant amelioration in bleomycin-induced damage to pulmonary architecture following ODN2088 treatment. A marked decrease in pulmonary epithelial and endothelial apoptosis rate as measured by cleaved caspase-3 expression, inflammatory reaction as indicated by tumor necrosis factor α expression, and pulmonary fibrosis as demonstrated by Van Gieson staining and α-smooth muscle actin immunohistochemistry were observed following ODN2088 treatment. CONCLUSIONS: All these findings indicate that blocking downstream TLR9 signaling could be beneficial in prevention or mitigation of ARDS through hemodynamic derangements, inflammation, apoptosis, and fibrosis. |
format | Online Article Text |
id | pubmed-8934996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Korean Society of Pathologists and the Korean Society for Cytopathology |
record_format | MEDLINE/PubMed |
spelling | pubmed-89349962022-03-29 Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury Alzahrani, Badr Gaballa, Mohamed M. S. Tantawy, Ahmed A. Moussa, Maha A. Shoulah, Salma A. Elshafae, Said M. J Pathol Transl Med Original Article BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most common complications in coronavirus disease 2019 patients suffering from acute lung injury (ALI). In ARDS, marked distortion of pulmonary architecture has been reported. The pulmonary lesions in ARDS include hemodynamic derangements (such as alveolar edema and hemorrhage), vascular and bronchiolar damage, interstitial inflammatory cellular aggregations, and eventually fibrosis. Bleomycin induces ARDS-representative pulmonary damage in mice and rats; therefore, we used bleomycin model mice in our study. Recently, Toll-like receptor 9 (TLR9) was implicated in the development of ARDS and ALI. METHODS: In this study, we evaluated the efficiency of a TLR9 blocker (ODN2088) on bleomycin-induced pulmonary damage. We measured the apoptosis rate, inflammatory reaction, and fibroplasia in bleomycin- and bleomycin + ODN2088-treated mice. RESULTS: Our results showed a significant amelioration in bleomycin-induced damage to pulmonary architecture following ODN2088 treatment. A marked decrease in pulmonary epithelial and endothelial apoptosis rate as measured by cleaved caspase-3 expression, inflammatory reaction as indicated by tumor necrosis factor α expression, and pulmonary fibrosis as demonstrated by Van Gieson staining and α-smooth muscle actin immunohistochemistry were observed following ODN2088 treatment. CONCLUSIONS: All these findings indicate that blocking downstream TLR9 signaling could be beneficial in prevention or mitigation of ARDS through hemodynamic derangements, inflammation, apoptosis, and fibrosis. The Korean Society of Pathologists and the Korean Society for Cytopathology 2022-03 2022-03-02 /pmc/articles/PMC8934996/ /pubmed/35220710 http://dx.doi.org/10.4132/jptm.2021.12.27 Text en © 2022 The Korean Society of Pathologists/The Korean Society for Cytopathology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Alzahrani, Badr Gaballa, Mohamed M. S. Tantawy, Ahmed A. Moussa, Maha A. Shoulah, Salma A. Elshafae, Said M. Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title | Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title_full | Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title_fullStr | Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title_full_unstemmed | Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title_short | Blocking Toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
title_sort | blocking toll-like receptor 9 attenuates bleomycin-induced pulmonary injury |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934996/ https://www.ncbi.nlm.nih.gov/pubmed/35220710 http://dx.doi.org/10.4132/jptm.2021.12.27 |
work_keys_str_mv | AT alzahranibadr blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury AT gaballamohamedms blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury AT tantawyahmeda blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury AT moussamahaa blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury AT shoulahsalmaa blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury AT elshafaesaidm blockingtolllikereceptor9attenuatesbleomycininducedpulmonaryinjury |