Cargando…
Metal–Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis
[Image: see text] Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935371/ https://www.ncbi.nlm.nih.gov/pubmed/35239345 http://dx.doi.org/10.1021/acs.jpclett.1c04242 |
_version_ | 1784672029369171968 |
---|---|
author | Rogolino, Andrea Claes, Nathalie Cizaurre, Judit Marauri, Aimar Jumbo-Nogales, Alba Lawera, Zuzanna Kruse, Joscha Sanromán-Iglesias, María Zarketa, Ibai Calvo, Unai Jimenez-Izal, Elisa Rakovich, Yury P. Bals, Sara Matxain, Jon M. Grzelczak, Marek |
author_facet | Rogolino, Andrea Claes, Nathalie Cizaurre, Judit Marauri, Aimar Jumbo-Nogales, Alba Lawera, Zuzanna Kruse, Joscha Sanromán-Iglesias, María Zarketa, Ibai Calvo, Unai Jimenez-Izal, Elisa Rakovich, Yury P. Bals, Sara Matxain, Jon M. Grzelczak, Marek |
author_sort | Rogolino, Andrea |
collection | PubMed |
description | [Image: see text] Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD(+) to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal–polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD(+) reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity. |
format | Online Article Text |
id | pubmed-8935371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89353712022-03-22 Metal–Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis Rogolino, Andrea Claes, Nathalie Cizaurre, Judit Marauri, Aimar Jumbo-Nogales, Alba Lawera, Zuzanna Kruse, Joscha Sanromán-Iglesias, María Zarketa, Ibai Calvo, Unai Jimenez-Izal, Elisa Rakovich, Yury P. Bals, Sara Matxain, Jon M. Grzelczak, Marek J Phys Chem Lett [Image: see text] Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD(+) to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal–polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD(+) reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity. American Chemical Society 2022-03-03 2022-03-17 /pmc/articles/PMC8935371/ /pubmed/35239345 http://dx.doi.org/10.1021/acs.jpclett.1c04242 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Rogolino, Andrea Claes, Nathalie Cizaurre, Judit Marauri, Aimar Jumbo-Nogales, Alba Lawera, Zuzanna Kruse, Joscha Sanromán-Iglesias, María Zarketa, Ibai Calvo, Unai Jimenez-Izal, Elisa Rakovich, Yury P. Bals, Sara Matxain, Jon M. Grzelczak, Marek Metal–Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis |
title | Metal–Polymer Heterojunction in Colloidal-Phase
Plasmonic Catalysis |
title_full | Metal–Polymer Heterojunction in Colloidal-Phase
Plasmonic Catalysis |
title_fullStr | Metal–Polymer Heterojunction in Colloidal-Phase
Plasmonic Catalysis |
title_full_unstemmed | Metal–Polymer Heterojunction in Colloidal-Phase
Plasmonic Catalysis |
title_short | Metal–Polymer Heterojunction in Colloidal-Phase
Plasmonic Catalysis |
title_sort | metal–polymer heterojunction in colloidal-phase
plasmonic catalysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935371/ https://www.ncbi.nlm.nih.gov/pubmed/35239345 http://dx.doi.org/10.1021/acs.jpclett.1c04242 |
work_keys_str_mv | AT rogolinoandrea metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT claesnathalie metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT cizaurrejudit metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT marauriaimar metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT jumbonogalesalba metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT lawerazuzanna metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT krusejoscha metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT sanromaniglesiasmaria metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT zarketaibai metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT calvounai metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT jimenezizalelisa metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT rakovichyuryp metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT balssara metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT matxainjonm metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis AT grzelczakmarek metalpolymerheterojunctionincolloidalphaseplasmoniccatalysis |