Cargando…

LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth

A solid understanding of the dynamics of plant nutrient requirements and uptake from the soil is needed to provide robust fertilizer recommendations, timing of applications and nutrient use efficiency. Our objective was to develop and test the ability of the crop model LINTUL-Cassava-NPK to simulate...

Descripción completa

Detalles Bibliográficos
Autores principales: Adiele, J.G., Schut, A.G.T., Ezui, K.S., Giller, K.E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Scientific Pub. Co 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935378/
https://www.ncbi.nlm.nih.gov/pubmed/35582150
http://dx.doi.org/10.1016/j.fcr.2022.108488
_version_ 1784672030852907008
author Adiele, J.G.
Schut, A.G.T.
Ezui, K.S.
Giller, K.E.
author_facet Adiele, J.G.
Schut, A.G.T.
Ezui, K.S.
Giller, K.E.
author_sort Adiele, J.G.
collection PubMed
description A solid understanding of the dynamics of plant nutrient requirements and uptake from the soil is needed to provide robust fertilizer recommendations, timing of applications and nutrient use efficiency. Our objective was to develop and test the ability of the crop model LINTUL-Cassava-NPK to simulate biomass growth and yield of cassava under nutrient-limited conditions. We used experimental data from six fields located in three different agro-ecologies in Nigeria: Rainforest Zone– Ogoja and Ikom (Cross River), Rainforest Transition Zone – Ekpoma (Edo) and Guinea Savanna Zone – Otukpo (Benue) over two consecutive growing seasons from 2016 to 2018. Nutrient stress in the model was implemented by combining N, P and K nutrition indices (NI) to account for the interaction of multiple nutrient limitations for crop growth. Nutrient uptake was determined by balancing demand and supply of nutrient equivalents. We parameterized and calibrated the model using observations from an experiment conducted under optimal growing conditions in Edo during the 2016 planting season. The model was then tested with data from experiments conducted in the 2017 season in Edo, Cross River and Benue. The model captured the uptake patterns of N, P and K well. Uptakes of N, P and K, and storage root yield were predicted with a small root mean squared error of 5.1 g N m(−2), 0.8 g P m(−2), 3.3 g K m(−2) and 308 g DM roots m(−2), with an R(2) of 0.7 – 0.8 for linear relationships between simulated and observed values. The time course of development of nutrient-limited yield of green leaves, stems and storage roots were simulated reasonably well. In general, the model responded aptly to both nutrient omissions and varying amounts of NPK. These findings increase our understanding of nutrient limitations and N, P and K interactions on cassava growth and yield. The model provided insight into surplus amounts of nutrients in the soil at the end of the season and, specifically, the need to balance the supply of N and K for cassava. To our knowledge, this is the first tested cassava process-based model that includes the three macro-nutrients.
format Online
Article
Text
id pubmed-8935378
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier Scientific Pub. Co
record_format MEDLINE/PubMed
spelling pubmed-89353782022-05-15 LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth Adiele, J.G. Schut, A.G.T. Ezui, K.S. Giller, K.E. Field Crops Res Article A solid understanding of the dynamics of plant nutrient requirements and uptake from the soil is needed to provide robust fertilizer recommendations, timing of applications and nutrient use efficiency. Our objective was to develop and test the ability of the crop model LINTUL-Cassava-NPK to simulate biomass growth and yield of cassava under nutrient-limited conditions. We used experimental data from six fields located in three different agro-ecologies in Nigeria: Rainforest Zone– Ogoja and Ikom (Cross River), Rainforest Transition Zone – Ekpoma (Edo) and Guinea Savanna Zone – Otukpo (Benue) over two consecutive growing seasons from 2016 to 2018. Nutrient stress in the model was implemented by combining N, P and K nutrition indices (NI) to account for the interaction of multiple nutrient limitations for crop growth. Nutrient uptake was determined by balancing demand and supply of nutrient equivalents. We parameterized and calibrated the model using observations from an experiment conducted under optimal growing conditions in Edo during the 2016 planting season. The model was then tested with data from experiments conducted in the 2017 season in Edo, Cross River and Benue. The model captured the uptake patterns of N, P and K well. Uptakes of N, P and K, and storage root yield were predicted with a small root mean squared error of 5.1 g N m(−2), 0.8 g P m(−2), 3.3 g K m(−2) and 308 g DM roots m(−2), with an R(2) of 0.7 – 0.8 for linear relationships between simulated and observed values. The time course of development of nutrient-limited yield of green leaves, stems and storage roots were simulated reasonably well. In general, the model responded aptly to both nutrient omissions and varying amounts of NPK. These findings increase our understanding of nutrient limitations and N, P and K interactions on cassava growth and yield. The model provided insight into surplus amounts of nutrients in the soil at the end of the season and, specifically, the need to balance the supply of N and K for cassava. To our knowledge, this is the first tested cassava process-based model that includes the three macro-nutrients. Elsevier Scientific Pub. Co 2022-05-15 /pmc/articles/PMC8935378/ /pubmed/35582150 http://dx.doi.org/10.1016/j.fcr.2022.108488 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Adiele, J.G.
Schut, A.G.T.
Ezui, K.S.
Giller, K.E.
LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title_full LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title_fullStr LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title_full_unstemmed LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title_short LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth
title_sort lintul-cassava-npk: a simulation model for nutrient-limited cassava growth
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935378/
https://www.ncbi.nlm.nih.gov/pubmed/35582150
http://dx.doi.org/10.1016/j.fcr.2022.108488
work_keys_str_mv AT adielejg lintulcassavanpkasimulationmodelfornutrientlimitedcassavagrowth
AT schutagt lintulcassavanpkasimulationmodelfornutrientlimitedcassavagrowth
AT ezuiks lintulcassavanpkasimulationmodelfornutrientlimitedcassavagrowth
AT gillerke lintulcassavanpkasimulationmodelfornutrientlimitedcassavagrowth