Cargando…
Modeling Hybrid Feature-Based Phishing Websites Detection Using Machine Learning Techniques
In this paper, we mainly present a machine learning based approach to detect real-time phishing websites by taking into account URL and hyperlink based hybrid features to achieve high accuracy without relying on any third-party systems. In phishing, the attackers typically try to deceive internet us...
Autores principales: | Das Guptta, Sumitra, Shahriar, Khandaker Tayef, Alqahtani, Hamed, Alsalman, Dheyaaldin, Sarker, Iqbal H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935623/ http://dx.doi.org/10.1007/s40745-022-00379-8 |
Ejemplares similares
-
Detecting phishing websites using machine learning technique
por: Dutta, Ashit Kumar
Publicado: (2021) -
Datasets for phishing websites detection
por: Vrbančič, Grega, et al.
Publicado: (2020) -
An effective detection approach for phishing websites using URL and HTML features
por: Aljofey, Ali, et al.
Publicado: (2022) -
Phishing website prediction using base and ensemble classifier techniques with cross-validation
por: Awasthi, Anjaneya, et al.
Publicado: (2022) -
COVID-19 analytics: Towards the effect of vaccine brands through analyzing public sentiment of tweets
por: Shahriar, Khandaker Tayef, et al.
Publicado: (2022)