Cargando…
Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions
Objective: Epileptic seizure prediction based on scalp electroencephalogram (EEG) is of great significance for improving the quality of life of patients with epilepsy. In recent years, a number of studies based on deep learning methods have been proposed to address this issue and achieve excellent p...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8936768/ https://www.ncbi.nlm.nih.gov/pubmed/35356539 http://dx.doi.org/10.1109/JTEHM.2022.3144037 |
Ejemplares similares
-
Efficient graph convolutional networks for seizure prediction using scalp EEG
por: Jia, Manhua, et al.
Publicado: (2022) -
Automatic BASED scoring on scalp EEG in children with infantile spasms using convolutional neural network
por: Fan, Yuying, et al.
Publicado: (2022) -
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization
por: Liang, Deng, et al.
Publicado: (2022) -
Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images
por: Emami, Ali, et al.
Publicado: (2019) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021)