Cargando…

Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Gambacorta, Francesca V., Wagner, Ellen R., Jacobson, Tyler B., Tremaine, Mary, Muehlbauer, Laura K., McGee, Mick A., Baerwald, Justin J., Wrobel, Russell L., Wolters, John F., Place, Mike, Dietrich, Joshua J., Xie, Dan, Serate, Jose, Gajbhiye, Shabda, Liu, Lisa, Vang-Smith, Maikayeng, Coon, Joshua J., Zhang, Yaoping, Gasch, Audrey P., Amador-Noguez, Daniel, Hittinger, Chris Todd, Sato, Trey K., Pfleger, Brian F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938195/
https://www.ncbi.nlm.nih.gov/pubmed/35387233
http://dx.doi.org/10.1016/j.synbio.2022.02.007
_version_ 1784672500151484416
author Gambacorta, Francesca V.
Wagner, Ellen R.
Jacobson, Tyler B.
Tremaine, Mary
Muehlbauer, Laura K.
McGee, Mick A.
Baerwald, Justin J.
Wrobel, Russell L.
Wolters, John F.
Place, Mike
Dietrich, Joshua J.
Xie, Dan
Serate, Jose
Gajbhiye, Shabda
Liu, Lisa
Vang-Smith, Maikayeng
Coon, Joshua J.
Zhang, Yaoping
Gasch, Audrey P.
Amador-Noguez, Daniel
Hittinger, Chris Todd
Sato, Trey K.
Pfleger, Brian F.
author_facet Gambacorta, Francesca V.
Wagner, Ellen R.
Jacobson, Tyler B.
Tremaine, Mary
Muehlbauer, Laura K.
McGee, Mick A.
Baerwald, Justin J.
Wrobel, Russell L.
Wolters, John F.
Place, Mike
Dietrich, Joshua J.
Xie, Dan
Serate, Jose
Gajbhiye, Shabda
Liu, Lisa
Vang-Smith, Maikayeng
Coon, Joshua J.
Zhang, Yaoping
Gasch, Audrey P.
Amador-Noguez, Daniel
Hittinger, Chris Todd
Sato, Trey K.
Pfleger, Brian F.
author_sort Gambacorta, Francesca V.
collection PubMed
description Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe–S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.
format Online
Article
Text
id pubmed-8938195
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-89381952022-04-05 Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway Gambacorta, Francesca V. Wagner, Ellen R. Jacobson, Tyler B. Tremaine, Mary Muehlbauer, Laura K. McGee, Mick A. Baerwald, Justin J. Wrobel, Russell L. Wolters, John F. Place, Mike Dietrich, Joshua J. Xie, Dan Serate, Jose Gajbhiye, Shabda Liu, Lisa Vang-Smith, Maikayeng Coon, Joshua J. Zhang, Yaoping Gasch, Audrey P. Amador-Noguez, Daniel Hittinger, Chris Todd Sato, Trey K. Pfleger, Brian F. Synth Syst Biotechnol Original Research Article Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe–S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol. KeAi Publishing 2022-03-18 /pmc/articles/PMC8938195/ /pubmed/35387233 http://dx.doi.org/10.1016/j.synbio.2022.02.007 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Gambacorta, Francesca V.
Wagner, Ellen R.
Jacobson, Tyler B.
Tremaine, Mary
Muehlbauer, Laura K.
McGee, Mick A.
Baerwald, Justin J.
Wrobel, Russell L.
Wolters, John F.
Place, Mike
Dietrich, Joshua J.
Xie, Dan
Serate, Jose
Gajbhiye, Shabda
Liu, Lisa
Vang-Smith, Maikayeng
Coon, Joshua J.
Zhang, Yaoping
Gasch, Audrey P.
Amador-Noguez, Daniel
Hittinger, Chris Todd
Sato, Trey K.
Pfleger, Brian F.
Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title_full Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title_fullStr Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title_full_unstemmed Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title_short Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
title_sort comparative functional genomics identifies an iron-limited bottleneck in a saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938195/
https://www.ncbi.nlm.nih.gov/pubmed/35387233
http://dx.doi.org/10.1016/j.synbio.2022.02.007
work_keys_str_mv AT gambacortafrancescav comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT wagnerellenr comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT jacobsontylerb comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT tremainemary comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT muehlbauerlaurak comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT mcgeemicka comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT baerwaldjustinj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT wrobelrusselll comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT woltersjohnf comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT placemike comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT dietrichjoshuaj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT xiedan comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT seratejose comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT gajbhiyeshabda comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT liulisa comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT vangsmithmaikayeng comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT coonjoshuaj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT zhangyaoping comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT gaschaudreyp comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT amadornoguezdaniel comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT hittingerchristodd comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT satotreyk comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway
AT pflegerbrianf comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway