Cargando…
Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway
Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiolo...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938195/ https://www.ncbi.nlm.nih.gov/pubmed/35387233 http://dx.doi.org/10.1016/j.synbio.2022.02.007 |
_version_ | 1784672500151484416 |
---|---|
author | Gambacorta, Francesca V. Wagner, Ellen R. Jacobson, Tyler B. Tremaine, Mary Muehlbauer, Laura K. McGee, Mick A. Baerwald, Justin J. Wrobel, Russell L. Wolters, John F. Place, Mike Dietrich, Joshua J. Xie, Dan Serate, Jose Gajbhiye, Shabda Liu, Lisa Vang-Smith, Maikayeng Coon, Joshua J. Zhang, Yaoping Gasch, Audrey P. Amador-Noguez, Daniel Hittinger, Chris Todd Sato, Trey K. Pfleger, Brian F. |
author_facet | Gambacorta, Francesca V. Wagner, Ellen R. Jacobson, Tyler B. Tremaine, Mary Muehlbauer, Laura K. McGee, Mick A. Baerwald, Justin J. Wrobel, Russell L. Wolters, John F. Place, Mike Dietrich, Joshua J. Xie, Dan Serate, Jose Gajbhiye, Shabda Liu, Lisa Vang-Smith, Maikayeng Coon, Joshua J. Zhang, Yaoping Gasch, Audrey P. Amador-Noguez, Daniel Hittinger, Chris Todd Sato, Trey K. Pfleger, Brian F. |
author_sort | Gambacorta, Francesca V. |
collection | PubMed |
description | Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe–S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol. |
format | Online Article Text |
id | pubmed-8938195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-89381952022-04-05 Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway Gambacorta, Francesca V. Wagner, Ellen R. Jacobson, Tyler B. Tremaine, Mary Muehlbauer, Laura K. McGee, Mick A. Baerwald, Justin J. Wrobel, Russell L. Wolters, John F. Place, Mike Dietrich, Joshua J. Xie, Dan Serate, Jose Gajbhiye, Shabda Liu, Lisa Vang-Smith, Maikayeng Coon, Joshua J. Zhang, Yaoping Gasch, Audrey P. Amador-Noguez, Daniel Hittinger, Chris Todd Sato, Trey K. Pfleger, Brian F. Synth Syst Biotechnol Original Research Article Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe–S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol. KeAi Publishing 2022-03-18 /pmc/articles/PMC8938195/ /pubmed/35387233 http://dx.doi.org/10.1016/j.synbio.2022.02.007 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Gambacorta, Francesca V. Wagner, Ellen R. Jacobson, Tyler B. Tremaine, Mary Muehlbauer, Laura K. McGee, Mick A. Baerwald, Justin J. Wrobel, Russell L. Wolters, John F. Place, Mike Dietrich, Joshua J. Xie, Dan Serate, Jose Gajbhiye, Shabda Liu, Lisa Vang-Smith, Maikayeng Coon, Joshua J. Zhang, Yaoping Gasch, Audrey P. Amador-Noguez, Daniel Hittinger, Chris Todd Sato, Trey K. Pfleger, Brian F. Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title | Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title_full | Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title_fullStr | Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title_full_unstemmed | Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title_short | Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
title_sort | comparative functional genomics identifies an iron-limited bottleneck in a saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938195/ https://www.ncbi.nlm.nih.gov/pubmed/35387233 http://dx.doi.org/10.1016/j.synbio.2022.02.007 |
work_keys_str_mv | AT gambacortafrancescav comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT wagnerellenr comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT jacobsontylerb comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT tremainemary comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT muehlbauerlaurak comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT mcgeemicka comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT baerwaldjustinj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT wrobelrusselll comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT woltersjohnf comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT placemike comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT dietrichjoshuaj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT xiedan comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT seratejose comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT gajbhiyeshabda comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT liulisa comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT vangsmithmaikayeng comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT coonjoshuaj comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT zhangyaoping comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT gaschaudreyp comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT amadornoguezdaniel comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT hittingerchristodd comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT satotreyk comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway AT pflegerbrianf comparativefunctionalgenomicsidentifiesanironlimitedbottleneckinasaccharomycescerevisiaestrainwithacytosoliclocalizedisobutanolpathway |