Cargando…
A review of microscopic cell imaging and neural network recognition for synergistic cyanobacteria identification and enumeration
Real-time cyanobacteria/algal monitoring is a valuable tool for early detection of harmful algal blooms, water treatment efficacy evaluation, and assists tailored water quality risk assessments by considering taxonomy and cell counts. This review evaluates and proposes a synergistic approach using n...
Autores principales: | Vaughan, Liam, Zamyadi, Arash, Ajjampur, Suraj, Almutaram, Husein, Freguia, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938360/ https://www.ncbi.nlm.nih.gov/pubmed/35286640 http://dx.doi.org/10.1007/s44211-021-00013-2 |
Ejemplares similares
-
Cyanotoxins and Cyanobacteria Cell Accumulations in Drinking Water Treatment Plants with a Low Risk of Bloom Formation at the Source
por: Almuhtaram, Husein, et al.
Publicado: (2018) -
Evaluating Ultrasonicator Performance for Cyanobacteria Management at Freshwater Sources
por: Vaughan, Liam, et al.
Publicado: (2023) -
Enhanced convolutional neural network for plankton identification and enumeration
por: Cheng, Kaichang, et al.
Publicado: (2019) -
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis
por: Greenstein, Katherine E., et al.
Publicado: (2021) -
Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants
por: Jalili, Farhad, et al.
Publicado: (2022)