Cargando…

Dynamic alterations in the lung microbiota in a rat model of lipopolysaccharide-induced acute lung injury

The lung microbiota have been found to be substantially altered in numerous pulmonary disorders, and crosstalk between the host pathophysiology and lung microbiota plays critical roles in the regulation of disease states. The aim of this study was to investigate dynamic changes in the lung microbiot...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Zhigang, Wu, Enqi, You, Jia, Ma, Gang, Jiang, Shenzhen, Liu, Yuanyuan, Hou, Jia, Hou, Sihan, Ling, Yaqin, Pei, Lingpeng, Zheng, Xiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938502/
https://www.ncbi.nlm.nih.gov/pubmed/35314755
http://dx.doi.org/10.1038/s41598-022-08831-8
Descripción
Sumario:The lung microbiota have been found to be substantially altered in numerous pulmonary disorders, and crosstalk between the host pathophysiology and lung microbiota plays critical roles in the regulation of disease states. The aim of this study was to investigate dynamic changes in the lung microbiota during different stages of acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Rats receiving an intraperitoneal administration of lipopolysaccharide (LPS) were sacrificed at 12 and 48 h after injection, and the hematological parameters, serum cytokine levels, and histological characteristics of the lung tissue and lung microbiota were assessed. After LPS injection, along with fluctuations of systemic cytokine levels and the onset and regression of pulmonary edema, the diversity, components, and functionalities of the pulmonary microbiota underwent significant dynamic changes. The volatility of the α-diversity indices narrowed after LPS injection, and the indices significantly decreased 48 h later. The abundance of 18 genera and functionality of adenosine triphosphate–binding cassette (ABC) transporters, pentose phosphate, and bacterial chemotaxis pathways were found to significantly differ between specified time points. Several significant correlations between the components and functionalities of the lung microbiota and indicative symptoms of ALI/ARDS were also observed. Brevibacterium was correlated with cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-10, and IL-6 and with hematological percentage of neutrophils (NEU%); Wnt, Notch, and chronic myeloid leukemia signaling pathways were correlated with IL-1β; mitogen-activated protein kinase (MAPK) signaling pathway–yeast was correlated with IL-10; and the pathways of ascorbate and aldarate metabolism and basal transcription factors were correlated with platelet-related indicators. The correlations between the lung microbiota and indicative symptoms of ALI/ARDS identified in this study support further investigation into the underlying mechanism of host–microbiota interactions during lung injury and repair.