Cargando…
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty
BACKGROUND: Reverse total shoulder arthroplasty (rTSA) offers tremendous promise for the treatment of complex pathologies beyond the scope of anatomic total shoulder arthroplasty but is associated with a higher rate of major postoperative complications. We aimed to design and validate a machine lear...
Autores principales: | Devana, Sai K., Shah, Akash A., Lee, Changhee, Gudapati, Varun, Jensen, Andrew R., Cheung, Edward, Solorzano, Carlos, van der Schaar, Mihaela, SooHoo, Nelson F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938598/ https://www.ncbi.nlm.nih.gov/pubmed/35330785 http://dx.doi.org/10.1177/24715492211038172 |
Ejemplares similares
-
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total Shoulder Replacements
por: Devana, Sai K, et al.
Publicado: (2022) -
A Novel, Potentially Universal Machine Learning Algorithm to Predict Complications in Total Knee Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
Development of a Machine Learning Algorithm for Prediction of Complications after Ankle Arthrodesis
por: Bugarin, Amador, et al.
Publicado: (2022) -
Ninety-day readmissions following reverse total shoulder arthroplasty
por: Scott, Kelly L., et al.
Publicado: (2019) -
Strength Assessment After Reverse Shoulder
Arthroplasty
por: Almeida, Alexandre, et al.
Publicado: (2023)