Cargando…
Automatic kidney segmentation using 2.5D ResUNet and 2.5D DenseUNet for malignant potential analysis in complex renal cyst based on CT images
Bosniak renal cyst classification has been widely used in determining the complexity of a renal cyst. However, it turns out that about half of patients undergoing surgery for Bosniak category III, take surgical risks that reward them with no clinical benefit at all. This is because their pathologica...
Autores principales: | Kittipongdaja, Parin, Siriborvornratanakul, Thitirat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938741/ https://www.ncbi.nlm.nih.gov/pubmed/35340560 http://dx.doi.org/10.1186/s13640-022-00581-x |
Ejemplares similares
-
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021) -
Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework
por: Weng, Chi-Hung, et al.
Publicado: (2019) -
Left Ventricle Segmentation in Cardiac MR Images via an Improved ResUnet
por: Xu, Shengzhou, et al.
Publicado: (2022) -
Zebrafish Embryo Vessel Segmentation Using a Novel Dual ResUNet Model
por: Zhang, Kun, et al.
Publicado: (2019) -
Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
por: Morelli, Roberto, et al.
Publicado: (2021)