Cargando…
Computerized Decision Support for Bladder Cancer Treatment Response Assessment in CT Urography: Effect on Diagnostic Accuracy in Multi-Institution Multi-Specialty Study
This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians’ diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment res...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938803/ https://www.ncbi.nlm.nih.gov/pubmed/35314631 http://dx.doi.org/10.3390/tomography8020054 |
Sumario: | This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians’ diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment response without and with CDSS-T using pre- and post-chemotherapy CTU scans in 123 patients having 157 pre- and post-treatment cancer pairs. The impact of cancer case difficulty, observers’ clinical experience, institution affiliation, specialty, and the assessment times on the observers’ diagnostic performance with and without using CDSS-T were analyzed. It was found that the average performance of the 17 observers was significantly improved (p = 0.002) when aided by the CDSS-T. The cancer case difficulty, institution affiliation, specialty, and the assessment times influenced the observers’ performance without CDSS-T. The AI-based decision support system has the potential to improve the diagnostic accuracy in assessing bladder cancer treatment response and result in more consistent performance among all physicians. |
---|