Cargando…
Computerized Decision Support for Bladder Cancer Treatment Response Assessment in CT Urography: Effect on Diagnostic Accuracy in Multi-Institution Multi-Specialty Study
This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians’ diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment res...
Autores principales: | Sun, Di, Hadjiiski, Lubomir, Alva, Ajjai, Zakharia, Yousef, Joshi, Monika, Chan, Heang-Ping, Garje, Rohan, Pomerantz, Lauren, Elhag, Dean, Cohan, Richard H., Caoili, Elaine M., Kerr, Wesley T., Cha, Kenny H., Kirova-Nedyalkova, Galina, Davenport, Matthew S., Shankar, Prasad R., Francis, Isaac R., Shampain, Kimberly, Meyer, Nathaniel, Barkmeier, Daniel, Woolen, Sean, Palmbos, Phillip L., Weizer, Alon Z., Samala, Ravi K., Zhou, Chuan, Matuszak, Martha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938803/ https://www.ncbi.nlm.nih.gov/pubmed/35314631 http://dx.doi.org/10.3390/tomography8020054 |
Ejemplares similares
-
Intraobserver Variability in Bladder Cancer Treatment Response Assessment With and Without Computerized Decision Support
por: Hadjiiski, Lubomir M., et al.
Publicado: (2020) -
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning
por: Cha, Kenny H., et al.
Publicado: (2017) -
Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network—A Pilot Study
por: Cha, Kenny H., et al.
Publicado: (2016) -
Deep Learning Approach for Assessment of Bladder Cancer Treatment Response
por: Wu, Eric, et al.
Publicado: (2019) -
Survival Prediction of Patients with Bladder Cancer after Cystectomy Based on Clinical, Radiomics, and Deep-Learning Descriptors
por: Sun, Di, et al.
Publicado: (2023)