Cargando…
Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase
[Image: see text] The cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. An in-depth understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes and provides an essential benchmark for enz...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938923/ https://www.ncbi.nlm.nih.gov/pubmed/35356705 http://dx.doi.org/10.1021/acscatal.1c05656 |
_version_ | 1784672650696589312 |
---|---|
author | Pfeiffer, Martin Crean, Rory M. Moreira, Catia Parracino, Antonietta Oberdorfer, Gustav Brecker, Lothar Hammerschmidt, Friedrich Kamerlin, Shina Caroline Lynn Nidetzky, Bernd |
author_facet | Pfeiffer, Martin Crean, Rory M. Moreira, Catia Parracino, Antonietta Oberdorfer, Gustav Brecker, Lothar Hammerschmidt, Friedrich Kamerlin, Shina Caroline Lynn Nidetzky, Bernd |
author_sort | Pfeiffer, Martin |
collection | PubMed |
description | [Image: see text] The cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. An in-depth understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes and provides an essential benchmark for enzyme design and engineering. Here, we study the functional interconnectedness of the catalytic nucleophile (His18) in an acid phosphatase by analyzing the consequences of its replacement with aspartate. We present crystallographic, biochemical, and computational evidence for a conserved mechanistic pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy relationships for phosphoryl transfer from phosphomonoester substrates to His18/Asp18 provide evidence for the cooperative interplay between the nucleophilic and general-acid catalytic groups in the wild-type enzyme, and its substantial loss in the H18D variant. As an isolated factor of phosphatase efficiency, the advantage of a histidine compared to an aspartate nucleophile is ∼10(4)-fold. Cooperativity with the catalytic acid adds ≥10(2)-fold to that advantage. Empirical valence bond simulations of phosphoryl transfer from glucose 1-phosphate to His and Asp in the enzyme explain the loss of activity of the Asp18 enzyme through a combination of impaired substrate positioning in the Michaelis complex, as well as a shift from early to late protonation of the leaving group in the H18D variant. The evidence presented furthermore suggests that the cooperative nature of catalysis distinguishes the enzymatic reaction from the corresponding reaction in solution and is enabled by the electrostatic preorganization of the active site. Our results reveal sophisticated discrimination in multifunctional catalysis of a highly proficient phosphatase active site. |
format | Online Article Text |
id | pubmed-8938923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89389232022-03-28 Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase Pfeiffer, Martin Crean, Rory M. Moreira, Catia Parracino, Antonietta Oberdorfer, Gustav Brecker, Lothar Hammerschmidt, Friedrich Kamerlin, Shina Caroline Lynn Nidetzky, Bernd ACS Catal [Image: see text] The cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. An in-depth understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes and provides an essential benchmark for enzyme design and engineering. Here, we study the functional interconnectedness of the catalytic nucleophile (His18) in an acid phosphatase by analyzing the consequences of its replacement with aspartate. We present crystallographic, biochemical, and computational evidence for a conserved mechanistic pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy relationships for phosphoryl transfer from phosphomonoester substrates to His18/Asp18 provide evidence for the cooperative interplay between the nucleophilic and general-acid catalytic groups in the wild-type enzyme, and its substantial loss in the H18D variant. As an isolated factor of phosphatase efficiency, the advantage of a histidine compared to an aspartate nucleophile is ∼10(4)-fold. Cooperativity with the catalytic acid adds ≥10(2)-fold to that advantage. Empirical valence bond simulations of phosphoryl transfer from glucose 1-phosphate to His and Asp in the enzyme explain the loss of activity of the Asp18 enzyme through a combination of impaired substrate positioning in the Michaelis complex, as well as a shift from early to late protonation of the leaving group in the H18D variant. The evidence presented furthermore suggests that the cooperative nature of catalysis distinguishes the enzymatic reaction from the corresponding reaction in solution and is enabled by the electrostatic preorganization of the active site. Our results reveal sophisticated discrimination in multifunctional catalysis of a highly proficient phosphatase active site. American Chemical Society 2022-02-28 2022-03-18 /pmc/articles/PMC8938923/ /pubmed/35356705 http://dx.doi.org/10.1021/acscatal.1c05656 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Pfeiffer, Martin Crean, Rory M. Moreira, Catia Parracino, Antonietta Oberdorfer, Gustav Brecker, Lothar Hammerschmidt, Friedrich Kamerlin, Shina Caroline Lynn Nidetzky, Bernd Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase |
title | Essential Functional Interplay of the Catalytic Groups
in Acid Phosphatase |
title_full | Essential Functional Interplay of the Catalytic Groups
in Acid Phosphatase |
title_fullStr | Essential Functional Interplay of the Catalytic Groups
in Acid Phosphatase |
title_full_unstemmed | Essential Functional Interplay of the Catalytic Groups
in Acid Phosphatase |
title_short | Essential Functional Interplay of the Catalytic Groups
in Acid Phosphatase |
title_sort | essential functional interplay of the catalytic groups
in acid phosphatase |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938923/ https://www.ncbi.nlm.nih.gov/pubmed/35356705 http://dx.doi.org/10.1021/acscatal.1c05656 |
work_keys_str_mv | AT pfeiffermartin essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT creanrorym essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT moreiracatia essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT parracinoantonietta essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT oberdorfergustav essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT breckerlothar essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT hammerschmidtfriedrich essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT kamerlinshinacarolinelynn essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase AT nidetzkybernd essentialfunctionalinterplayofthecatalyticgroupsinacidphosphatase |