Cargando…
A deep learning-based framework for detecting COVID-19 patients using chest X-rays
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease (COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the spread of the COVID-19 epidemic. To solve this problem, radiography tech...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939400/ https://www.ncbi.nlm.nih.gov/pubmed/35341212 http://dx.doi.org/10.1007/s00530-022-00917-7 |
_version_ | 1784672720141680640 |
---|---|
author | Asif, Sohaib Zhao, Ming Tang, Fengxiao Zhu, Yusen |
author_facet | Asif, Sohaib Zhao, Ming Tang, Fengxiao Zhu, Yusen |
author_sort | Asif, Sohaib |
collection | PubMed |
description | Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease (COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the spread of the COVID-19 epidemic. To solve this problem, radiography techniques (such as chest X-rays and computed tomography (CT)) can play an important role in the early prediction of COVID-19 patients, which will help to treat patients in a timely manner. We aimed to quickly develop a highly efficient lightweight CNN architecture for detecting COVID-19-infected patients. The purpose of this paper is to propose a robust deep learning-based system for reliably detecting COVID-19 from chest X-ray images. First, we evaluate the performance of various pre-trained deep learning models (InceptionV3, Xception, MobileNetV2, NasNet and DenseNet201) recently proposed for medical image classification. Second, a lightweight shallow convolutional neural network (CNN) architecture is proposed for classifying X-ray images of a patient with a low false-negative rate. The data set used in this work contains 2,541 chest X-rays from two different public databases, which have confirmed COVID-19 positive and healthy cases. The performance of the proposed model is compared with the performance of pre-trained deep learning models. The results show that the proposed shallow CNN provides a maximum accuracy of 99.68% and more importantly sensitivity, specificity and AUC of 99.66%, 99.70% and 99.98%. The proposed model has fewer parameters and low complexity compared to other deep learning models. The experimental results of our proposed method show that it is superior to the existing state-of-the-art methods. We believe that this model can help healthcare professionals to treat COVID-19 patients through improved and faster patient screening. |
format | Online Article Text |
id | pubmed-8939400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-89394002022-03-23 A deep learning-based framework for detecting COVID-19 patients using chest X-rays Asif, Sohaib Zhao, Ming Tang, Fengxiao Zhu, Yusen Multimed Syst Regular Paper Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease (COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the spread of the COVID-19 epidemic. To solve this problem, radiography techniques (such as chest X-rays and computed tomography (CT)) can play an important role in the early prediction of COVID-19 patients, which will help to treat patients in a timely manner. We aimed to quickly develop a highly efficient lightweight CNN architecture for detecting COVID-19-infected patients. The purpose of this paper is to propose a robust deep learning-based system for reliably detecting COVID-19 from chest X-ray images. First, we evaluate the performance of various pre-trained deep learning models (InceptionV3, Xception, MobileNetV2, NasNet and DenseNet201) recently proposed for medical image classification. Second, a lightweight shallow convolutional neural network (CNN) architecture is proposed for classifying X-ray images of a patient with a low false-negative rate. The data set used in this work contains 2,541 chest X-rays from two different public databases, which have confirmed COVID-19 positive and healthy cases. The performance of the proposed model is compared with the performance of pre-trained deep learning models. The results show that the proposed shallow CNN provides a maximum accuracy of 99.68% and more importantly sensitivity, specificity and AUC of 99.66%, 99.70% and 99.98%. The proposed model has fewer parameters and low complexity compared to other deep learning models. The experimental results of our proposed method show that it is superior to the existing state-of-the-art methods. We believe that this model can help healthcare professionals to treat COVID-19 patients through improved and faster patient screening. Springer Berlin Heidelberg 2022-03-22 2022 /pmc/articles/PMC8939400/ /pubmed/35341212 http://dx.doi.org/10.1007/s00530-022-00917-7 Text en © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Regular Paper Asif, Sohaib Zhao, Ming Tang, Fengxiao Zhu, Yusen A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title | A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title_full | A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title_fullStr | A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title_full_unstemmed | A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title_short | A deep learning-based framework for detecting COVID-19 patients using chest X-rays |
title_sort | deep learning-based framework for detecting covid-19 patients using chest x-rays |
topic | Regular Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939400/ https://www.ncbi.nlm.nih.gov/pubmed/35341212 http://dx.doi.org/10.1007/s00530-022-00917-7 |
work_keys_str_mv | AT asifsohaib adeeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT zhaoming adeeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT tangfengxiao adeeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT zhuyusen adeeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT asifsohaib deeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT zhaoming deeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT tangfengxiao deeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays AT zhuyusen deeplearningbasedframeworkfordetectingcovid19patientsusingchestxrays |