Cargando…
Multivariable Diagnostic Prediction Model to Detect Hormone Secretion Profile From T2W MRI Radiomics with Artificial Neural Networks in Pituitary Adenomas
OBJECTIVE: This study aims to develop neural networks to detect hormone secretion profiles in the pituitary adenomas based on T2 weighted magnetic resonance imaging (MRI) radiomics. METHODS: This retrospective model-development study included a cohort of patients with pituitary adenomas (n=130) from...
Autores principales: | BAYSAL, Begumhan, ESER, Mehmet Bilgin, DOGAN, Mahmut Bilal, KURSUN, Muhammet Arif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939455/ https://www.ncbi.nlm.nih.gov/pubmed/35306784 http://dx.doi.org/10.4274/MMJ.galenos.2022.58538 |
Ejemplares similares
-
Radiomics Features Based on MRI-ADC Maps of Patients with Breast Cancer: Relationship with Lesion Size, Features Stability, and Model Accuracy
por: BAYSAL, Begumhan, et al.
Publicado: (2022) -
Commentary on “A Universal Craniometric Index for Establishing the Diagnosis of Basilar Invagination”
por: Eser, Mehmet Bilgin, et al.
Publicado: (2021) -
False positivity of magnetic resonance imaging under the effect of granulocyte-colony stimulating factor in a child with leukemia
por: Cakir, Fatma Betul, et al.
Publicado: (2013) -
Stereotactic Irradiation of GH-Secreting Pituitary Adenomas
por: Minniti, G., et al.
Publicado: (2012) -
Synchronous GH- and prolactin-secreting pituitary adenomas
por: Rahman, Maryam, et al.
Publicado: (2014)