Cargando…
Bayesian calibration, process modeling and uncertainty quantification in biotechnology
High-throughput experimentation has revolutionized data-driven experimental sciences and opened the door to the application of machine learning techniques. Nevertheless, the quality of any data analysis strongly depends on the quality of the data and specifically the degree to which random effects i...
Autores principales: | Helleckes, Laura Marie, Osthege, Michael, Wiechert, Wolfgang, von Lieres, Eric, Oldiges, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939798/ https://www.ncbi.nlm.nih.gov/pubmed/35255090 http://dx.doi.org/10.1371/journal.pcbi.1009223 |
Ejemplares similares
-
Control of parallelized bioreactors II: probabilistic quantification of carboxylic acid reductase activity for bioprocess optimization
por: von den Eichen, Nikolas, et al.
Publicado: (2022) -
Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology
por: Hemmerich, Johannes, et al.
Publicado: (2017) -
A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design
por: Morschett, Holger, et al.
Publicado: (2017) -
From frozen cell bank to product assay: high-throughput strain characterisation for autonomous Design-Build-Test-Learn cycles
por: Helleckes, Laura M., et al.
Publicado: (2023) -
bletl ‐ A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle
por: Osthege, Michael, et al.
Publicado: (2022)