Cargando…

Appositeness of Optimized and Reliable Machine Learning for Healthcare: A Survey

Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The Healthcare industry is one of the largest and busiest sectors in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Swain, Subhasmita, Bhushan, Bharat, Dhiman, Gaurav, Viriyasitavat, Wattana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939887/
https://www.ncbi.nlm.nih.gov/pubmed/35342282
http://dx.doi.org/10.1007/s11831-022-09733-8
Descripción
Sumario:Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The Healthcare industry is one of the largest and busiest sectors in the world, functioning with an extensive amount of manual moderation at every stage. Most of the clinical documents concerning patient care are hand-written by experts, selective reports are machine-generated. This process elevates the chances of misdiagnosis thereby, imposing a risk to a patient's life. Recent technological adoptions for automating manual operations have witnessed extensive use of ML in its applications. The paper surveys the applicability of ML approaches in automating medical systems. The paper discusses most of the optimized statistical ML frameworks that encourage better service delivery in clinical aspects. The universal adoption of various Deep Learning (DL) and ML techniques as the underlying systems for a variety of wellness applications, is delineated by challenges and elevated by myriads of security. This work tries to recognize a variety of vulnerabilities occurring in medical procurement, admitting the concerns over its predictive performance from a privacy point of view. Finally providing possible risk delimiting facts and directions for active challenges in the future.