Cargando…
Value and prognostic impact of a deep learning segmentation model of COVID-19 lung lesions on low-dose chest CT
OBJECTIVES: 1) To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion quantification. METHODS: This monocentric retrospective study included training and test dataset...
Autores principales: | Bartoli, Axel, Fournel, Joris, Maurin, Arnaud, Marchi, Baptiste, Habert, Paul, Castelli, Maxime, Gaubert, Jean-Yves, Cortaredona, Sebastien, Lagier, Jean-Christophe, Million, Matthieu, Raoult, Didier, Ghattas, Badih, Jacquier, Alexis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Masson SAS on behalf of Société française de radiologie.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939894/ https://www.ncbi.nlm.nih.gov/pubmed/37520010 http://dx.doi.org/10.1016/j.redii.2022.100003 |
Ejemplares similares
-
Prevalence and risk factors for lung involvement on low-dose chest CT (LDCT) in a paucisymptomatic population of 247 patients affected by COVID-19
por: Castelli, Maxime, et al.
Publicado: (2020) -
Correction to: Prevalence and risk factors for lung involvement on low-dose chest CT (LDCT) in a paucisymptomatic population of 247 patients affected by COVID-19
por: Castelli, Maxime, et al.
Publicado: (2021) -
Automatic Deep-Learning Segmentation of Epicardial Adipose Tissue from Low-Dose Chest CT and Prognosis Impact on COVID-19
por: Bartoli, Axel, et al.
Publicado: (2022) -
Low-dose chest CT for diagnosing and assessing the extent of lung involvement of SARS-CoV-2 pneumonia using a semi quantitative score
por: Leger, Thomas, et al.
Publicado: (2020) -
Asymptomatic hypoxia in COVID-19 is associated with poor outcome
por: Brouqui, Philippe, et al.
Publicado: (2021)