Cargando…
A Boosting-Based Deep Distance Metric Learning Method
By leveraging neural networks, deep distance metric learning has yielded impressive results in computer vision applications. However, the existing approaches mostly focus a single deep distance metric based on pairs or triplets of samples. It is difficult for them to handle heterogeneous data and av...
Autor principal: | Li, Zilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940547/ https://www.ncbi.nlm.nih.gov/pubmed/35330605 http://dx.doi.org/10.1155/2022/2665843 |
Ejemplares similares
-
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006) -
Metrical Presentation Boosts Implicit Learning of Artificial Grammar
por: Selchenkova, Tatiana, et al.
Publicado: (2014) -
Distance-Metric Learning for Personalized Survival Analysis
por: Galetzka, Wolfgang, et al.
Publicado: (2023) -
DDNE: Discriminative Distance Metric Learning for Network Embedding
por: Li, Xiaoxue, et al.
Publicado: (2020) -
Possibilistic distribution distance metric: a robust domain adaptation learning method
por: Tao, Jianwen, et al.
Publicado: (2023)