Cargando…

Differentiation of primary central nervous system lymphoma from glioblastoma using optical coherence tomography based on attention ResNet

SIGNIFICANCE: Differentiation of primary central nervous system lymphoma from glioblastoma is clinically crucial to minimize the risk of treatments, but current imaging modalities often misclassify glioblastoma and lymphoma. Therefore, there is a need for methods to achieve high differentiation powe...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsu, Sanford P. C., Hsiao, Tien-Yu, Pai, Li-Chieh, Sun, Chia-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940883/
https://www.ncbi.nlm.nih.gov/pubmed/35345493
http://dx.doi.org/10.1117/1.NPh.9.1.015005
Descripción
Sumario:SIGNIFICANCE: Differentiation of primary central nervous system lymphoma from glioblastoma is clinically crucial to minimize the risk of treatments, but current imaging modalities often misclassify glioblastoma and lymphoma. Therefore, there is a need for methods to achieve high differentiation power intraoperatively. AIM: The aim is to develop and corroborate a method of classifying normal brain tissue, glioblastoma, and lymphoma using optical coherence tomography with deep learning algorithm in an ex vivo experimental design. APPROACH: We collected tumor specimens from ordinal surgical operations and measured them with optical coherence tomography. An attention ResNet deep learning model was utilized to differentiate glioblastoma and lymphoma from normal brain tissues. RESULTS: Our model demonstrated a robust classification power of detecting tumoral tissues from normal tissues and moderate discrimination between lymphoma and glioblastoma. Moreover, our results showed good consistency with the previous histological findings in the pathological manifestation of lymphoma, and this could be important from the aspect of future clinical practice. CONCLUSION: We proposed and demonstrated a quantitative approach to distinguish different brain tumor types. Using our method, both neoplasms can be identified and classified with high accuracy. Hopefully, the proposed method can finally assist surgeons with decision-making intraoperatively.