Cargando…
Data-driven discovery of Green’s functions with human-understandable deep learning
There is an opportunity for deep learning to revolutionize science and technology by revealing its findings in a human interpretable manner. To do this, we develop a novel data-driven approach for creating a human–machine partnership to accelerate scientific discovery. By collecting physical system...
Autores principales: | Boullé, Nicolas, Earls, Christopher J., Townsend, Alex |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940897/ https://www.ncbi.nlm.nih.gov/pubmed/35319007 http://dx.doi.org/10.1038/s41598-022-08745-5 |
Ejemplares similares
-
Elliptic PDE learning is provably data-efficient
por: Boullé, Nicolas, et al.
Publicado: (2023) -
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
por: Kurz, Daria, et al.
Publicado: (2021) -
Deep Learning Approach Based on Transcriptome Profile for Data Driven Drug Discovery
por: Kwon, Eun-Ji, et al.
Publicado: (2023) -
Deep Learning-driven research for drug discovery: Tackling Malaria
por: Neves, Bruno J., et al.
Publicado: (2020) -
DeepGreen: deep learning of Green’s functions for nonlinear boundary value problems
por: Gin, Craig R., et al.
Publicado: (2021)