Cargando…
Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy
Artificial intelligence (AI) is widely used to analyze gastrointestinal (GI) endoscopy image data. AI has led to several clinically approved algorithms for polyp detection, but application of AI beyond this specific task is limited by the high cost of manual annotations. Here, we show that a weakly...
Autores principales: | Buendgens, Lukas, Cifci, Didem, Ghaffari Laleh, Narmin, van Treeck, Marko, Koenen, Maria T., Zimmermann, Henning W., Herbold, Till, Lux, Thomas Joachim, Hann, Alexander, Trautwein, Christian, Kather, Jakob Nikolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941159/ https://www.ncbi.nlm.nih.gov/pubmed/35318364 http://dx.doi.org/10.1038/s41598-022-08773-1 |
Ejemplares similares
-
Medical domain knowledge in domain-agnostic generative AI
por: Kather, Jakob Nikolas, et al.
Publicado: (2022) -
Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology
por: Saldanha, Oliver Lester, et al.
Publicado: (2023) -
Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic Study Across 23 Solid Tumor Types
por: Loeffler, Chiara Maria Lavinia, et al.
Publicado: (2022) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Classical mathematical models for prediction of response to chemotherapy and immunotherapy
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022)