Cargando…
Optimization of the 16S rRNA sequencing analysis pipeline for studying in vitro communities of gut commensals
While microbial communities inhabit a wide variety of complex natural environments, in vitro culturing enables highly controlled conditions and high-throughput interrogation for generating mechanistic insights. In vitro assemblies of gut commensals have recently been introduced as models for the int...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941205/ https://www.ncbi.nlm.nih.gov/pubmed/35340431 http://dx.doi.org/10.1016/j.isci.2022.103907 |
Sumario: | While microbial communities inhabit a wide variety of complex natural environments, in vitro culturing enables highly controlled conditions and high-throughput interrogation for generating mechanistic insights. In vitro assemblies of gut commensals have recently been introduced as models for the intestinal microbiota, which plays fundamental roles in host health. However, a protocol for 16S rRNA sequencing and analysis of in vitro samples that optimizes financial cost, time/effort, and accuracy/reproducibility has yet to be established. Here, we systematically identify protocol elements that have significant impact, introduce bias, and/or can be simplified. Our results indicate that community diversity and composition are generally unaffected by substantial protocol streamlining. Additionally, we demonstrate that a strictly aerobic halophile is an effective spike-in for estimating absolute abundances in communities of anaerobic gut commensals. This time- and money-saving protocol should accelerate discovery by increasing 16S rRNA data reliability and comparability and through the incorporation of absolute abundance estimates. |
---|