Cargando…
Phenonizer: A Fine-Grained Phenotypic Named Entity Recognizer for Chinese Clinical Texts
Biomedical named entity recognition (BioNER) from clinical texts is a fundamental task for clinical data analysis due to the availability of large volume of electronic medical record data, which are mostly in free text format, in real-world clinical settings. Clinical text data incorporates signific...
Autores principales: | Zou, Qunsheng, Yang, Kuo, Shu, Zixin, Chang, Kai, Zheng, Qiguang, Zheng, Yi, Lu, Kezhi, Xu, Ning, Tian, Haoyu, Li, Xiaomeng, Yang, Yuxia, Zhou, Yana, Yu, Haibin, Zhang, Xiaoping, Xia, Jianan, Zhu, Qiang, Poon, Josiah, Poon, Simon, Zhang, Runshun, Li, Xiaodong, Zhou, Xuezhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941495/ https://www.ncbi.nlm.nih.gov/pubmed/35342762 http://dx.doi.org/10.1155/2022/3524090 |
Ejemplares similares
-
Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases
por: Shu, Zixin, et al.
Publicado: (2020) -
Topological Analysis of the Language Networks of Ancient Traditional Chinese Medicine Books
por: Zou, Qunsheng, et al.
Publicado: (2020) -
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
Direct Dehydrogenative Access to Unsymmetrical Phenones
por: Yu, Congjun, et al.
Publicado: (2022) -
We are not ready yet: limitations of state-of-the-art disease named entity recognizers
por: Kühnel, Lisa, et al.
Publicado: (2022)