Cargando…
Smooth stable manifolds for the non-instantaneous impulsive equations with applications to Duffing oscillators
In this paper, we present a theory of smooth stable manifold for the non-instantaneous impulsive differential equations on the Banach space or Hilbert space. Assume that the non-instantaneous linear impulsive evolution differential equation admits a uniform exponential dichotomy, we give the conditi...
Autores principales: | Lu, Weijie, Pinto, Manuel, Xia, Yonghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941643/ https://www.ncbi.nlm.nih.gov/pubmed/35350816 http://dx.doi.org/10.1098/rspa.2021.0957 |
Ejemplares similares
-
Non-instantaneous impulses in differential equations
por: Agarwal, Ravi, et al.
Publicado: (2017) -
The Duffing Equation: Nonlinear Oscillators and their Behaviour
por: Kovacic, Ivana, et al.
Publicado: (2011) -
An Elementary Solution to a Duffing Equation
por: Salas, Alvaro H.
Publicado: (2022) -
The Seiberg-Witten equations and applications to the topology of smooth four-manifolds (MN-44)
por: Morgan, John W
Publicado: (2014) -
Analytical Solution to the Generalized Complex Duffing Equation
por: Salas S, Alvaro H., et al.
Publicado: (2022)