Cargando…
A convolutional neural network based approach to financial time series prediction
Financial time series are chaotic that, in turn, leads their predictability to be complex and challenging. This paper presents a novel financial time series prediction hybrid that involves Chaos Theory, Convolutional neural network (CNN), and Polynomial Regression (PR). The financial time series is...
Autores principales: | Durairaj, Dr. M., Mohan, B. H. Krishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941655/ https://www.ncbi.nlm.nih.gov/pubmed/35345555 http://dx.doi.org/10.1007/s00521-022-07143-2 |
Ejemplares similares
-
FEBDNN: fusion embedding-based deep neural network for user retweeting behavior prediction on social networks
por: Wang, Lidong, et al.
Publicado: (2022) -
Differentially private multivariate time series forecasting of aggregated human mobility with deep learning: Input or gradient perturbation?
por: Arcolezi, Héber Hwang, et al.
Publicado: (2022) -
Applying attention-based BiLSTM and technical indicators in the design and performance analysis of stock trading strategies
por: Lee, Ming-Che, et al.
Publicado: (2022) -
A deep LSTM network for the Spanish electricity consumption forecasting
por: Torres, J. F., et al.
Publicado: (2022) -
Convolutional neural network-based models for diagnosis of breast cancer
por: Masud, Mehedi, et al.
Publicado: (2020)