Cargando…
Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records
OBJECTIVE: Pituitary adenomas are the most common type of pituitary disorders, which usually occur in young adults and often affect the patient’s physical development, labor capacity and fertility. Clinical free texts noted in electronic medical records (EMRs) of pituitary adenomas patients contain...
Autores principales: | Fang, An, Hu, Jiahui, Zhao, Wanqing, Feng, Ming, Fu, Ji, Feng, Shanshan, Lou, Pei, Ren, Huiling, Chen, Xianlai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941801/ https://www.ncbi.nlm.nih.gov/pubmed/35321705 http://dx.doi.org/10.1186/s12911-022-01810-z |
Ejemplares similares
-
Head and Tail Entity Fusion Model in Medical Knowledge Graph Construction: Case Study for Pituitary Adenoma
por: Fang, An, et al.
Publicado: (2021) -
A hybrid approach for named entity recognition in Chinese electronic medical record
por: Ji, Bin, et al.
Publicado: (2019) -
Constructing a Chinese electronic medical record corpus for named entity recognition on resident admit notes
por: Gao, Yan, et al.
Publicado: (2019) -
Improving the Named Entity Recognition of Chinese Electronic Medical Records by Combining Domain Dictionary and Rules
por: Chen, Xianglong, et al.
Publicado: (2020) -
Named Entity Recognition in Electronic Health Records: A Methodological Review
por: Durango, María C., et al.
Publicado: (2023)