Cargando…
Accuracy of a pre-trained sentiment analysis (SA) classification model on tweets related to emergency response and early recovery assessment: the case of 2019 Albanian earthquake
Traditionally, earthquake impact assessments have been made via fieldwork by non-governmental organisations (NGO's) sponsored data collection; however, this approach is time-consuming, expensive and often limited. Recently, social media (SM) has become a valuable tool for quickly collecting lar...
Autores principales: | Contreras, Diana, Wilkinson, Sean, Alterman, Evangeline, Hervás, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942049/ https://www.ncbi.nlm.nih.gov/pubmed/35345448 http://dx.doi.org/10.1007/s11069-022-05307-w |
Ejemplares similares
-
Tweets Classification on the Base of Sentiments for US Airline Companies
por: Rustam, Furqan, et al.
Publicado: (2019) -
Knowledge-Based Tweet Classification for Disease Sentiment Monitoring
por: Ji, Xiang, et al.
Publicado: (2016) -
A reliable sentiment analysis for classification of tweets in social networks
por: AminiMotlagh, Masoud, et al.
Publicado: (2022) -
Human-annotated dataset for social media sentiment analysis for Albanian language
por: Kadriu, Fatbardh, et al.
Publicado: (2022) -
Semantic Sentiment Classification for COVID-19 Tweets Using Universal Sentence Encoder
por: Fattoh, Ibrahim Eldesouky, et al.
Publicado: (2022)