Cargando…

Temporal concordance between pulse contour analysis, bioreactance and carotid doppler during rapid preload changes

PURPOSE: We describe the temporal concordance of 3 hemodynamic monitors. MATERIALS AND METHODS: Healthy volunteers performed preload changes while simultaneously wearing a non-invasive, pulse-contour stroke volume (SV) monitor, a bioreactance SV monitor and a wireless, wearable Doppler ultrasound pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kenny, Jon-Émile S., Barjaktarevic, Igor, Eibl, Andrew M., Parrotta, Matthew, Long, Bradley F., Elfarnawany, Mai, Eibl, Joseph K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942202/
https://www.ncbi.nlm.nih.gov/pubmed/35320307
http://dx.doi.org/10.1371/journal.pone.0265711
Descripción
Sumario:PURPOSE: We describe the temporal concordance of 3 hemodynamic monitors. MATERIALS AND METHODS: Healthy volunteers performed preload changes while simultaneously wearing a non-invasive, pulse-contour stroke volume (SV) monitor, a bioreactance SV monitor and a wireless, wearable Doppler ultrasound patch over the common carotid artery. The sensitivity and specificity for detecting preload change over 3 temporal windows (early, middle and late) was assessed. RESULTS: 40 preload changes were recorded in total (20 increase, 20 decrease). Immediately, the wearable Doppler had high sensitivity (100%) and specificity (100%) for detecting preload change with an area under the receiver operator curve (AUROC) of 0.98 for both velocity time integral (VTI, 10.5% threshold) and corrected flow time (FTc, 2.5% threshold). The sensitivity, specificity and AUROC for non-invasive pulse contour were equally good (9% SV threshold). For bioreactance, a 13% SV threshold immediately detected preload change with a sensitivity, specificity and AUROC of 60%, 95% and 0.75, respectively. After two SV outputs following preload change, the sensitivity, specificity and AUROC of bioreactance improved to 70%, 90% and 0.85, respectively. CONCLUSIONS: Carotid Doppler ultrasound and non-invasive pulse contour detected rapid hemodynamic change with equal accuracy; bioreactance improved over time. Algorithm-lag should be considered when interpreting clinical studies.