Cargando…
Processing time affects sequential memory performance beginning at the level of visual encoding
Electrophysiological studies have demonstrated that theta-band activity is useful for investigating neural mechanisms of memory. However, mechanisms specifically driving memory performance remain poorly understood. In sequential memory, performance can be artificially attenuated by shortening the in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942227/ https://www.ncbi.nlm.nih.gov/pubmed/35320312 http://dx.doi.org/10.1371/journal.pone.0265719 |
_version_ | 1784673261382008832 |
---|---|
author | Takase, Ryoken Boasen, Jared Kuriki, Shinya Toyomura, Akira Yokosawa, Koichi |
author_facet | Takase, Ryoken Boasen, Jared Kuriki, Shinya Toyomura, Akira Yokosawa, Koichi |
author_sort | Takase, Ryoken |
collection | PubMed |
description | Electrophysiological studies have demonstrated that theta-band activity is useful for investigating neural mechanisms of memory. However, mechanisms specifically driving memory performance remain poorly understood. In sequential memory, performance can be artificially attenuated by shortening the inter-stimulus interval (ISI) between memory item presentations. Therefore, we sought to clarify the mechanisms of sequential memory performance by analyzing theta-band (4–8 Hz) activity recorded via magnetoencephalogram in 33 participants during performance of a sequential memory task where memory items were presented at either slow or fast rates in accordance with longer or shorter ISIs, respectively. Particularly in the slow task, theta activity clearly modulated in accordance with the presentation of memory items. Common cortical target regions in the occipital and frontal cortex were identified in both tasks and related to visual encoding and memory maintenance, respectively. Compared to the slow task, occipital-theta activity was significantly lower in the fast task from the midterm until the ending of encoding, in correspondence with significantly lower recall for memory items in this same period. Meanwhile, despite a loss of clarity in responsiveness to individual memory items in the fast task, frontal-theta activity was not different between tasks and exhibited particularly strong responses in both tasks during the holding period prior to recall. Our results indicate that shorter processing time erodes sequential memory performance beginning at the level of visual encoding. |
format | Online Article Text |
id | pubmed-8942227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-89422272022-03-24 Processing time affects sequential memory performance beginning at the level of visual encoding Takase, Ryoken Boasen, Jared Kuriki, Shinya Toyomura, Akira Yokosawa, Koichi PLoS One Research Article Electrophysiological studies have demonstrated that theta-band activity is useful for investigating neural mechanisms of memory. However, mechanisms specifically driving memory performance remain poorly understood. In sequential memory, performance can be artificially attenuated by shortening the inter-stimulus interval (ISI) between memory item presentations. Therefore, we sought to clarify the mechanisms of sequential memory performance by analyzing theta-band (4–8 Hz) activity recorded via magnetoencephalogram in 33 participants during performance of a sequential memory task where memory items were presented at either slow or fast rates in accordance with longer or shorter ISIs, respectively. Particularly in the slow task, theta activity clearly modulated in accordance with the presentation of memory items. Common cortical target regions in the occipital and frontal cortex were identified in both tasks and related to visual encoding and memory maintenance, respectively. Compared to the slow task, occipital-theta activity was significantly lower in the fast task from the midterm until the ending of encoding, in correspondence with significantly lower recall for memory items in this same period. Meanwhile, despite a loss of clarity in responsiveness to individual memory items in the fast task, frontal-theta activity was not different between tasks and exhibited particularly strong responses in both tasks during the holding period prior to recall. Our results indicate that shorter processing time erodes sequential memory performance beginning at the level of visual encoding. Public Library of Science 2022-03-23 /pmc/articles/PMC8942227/ /pubmed/35320312 http://dx.doi.org/10.1371/journal.pone.0265719 Text en © 2022 Takase et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Takase, Ryoken Boasen, Jared Kuriki, Shinya Toyomura, Akira Yokosawa, Koichi Processing time affects sequential memory performance beginning at the level of visual encoding |
title | Processing time affects sequential memory performance beginning at the level of visual encoding |
title_full | Processing time affects sequential memory performance beginning at the level of visual encoding |
title_fullStr | Processing time affects sequential memory performance beginning at the level of visual encoding |
title_full_unstemmed | Processing time affects sequential memory performance beginning at the level of visual encoding |
title_short | Processing time affects sequential memory performance beginning at the level of visual encoding |
title_sort | processing time affects sequential memory performance beginning at the level of visual encoding |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942227/ https://www.ncbi.nlm.nih.gov/pubmed/35320312 http://dx.doi.org/10.1371/journal.pone.0265719 |
work_keys_str_mv | AT takaseryoken processingtimeaffectssequentialmemoryperformancebeginningatthelevelofvisualencoding AT boasenjared processingtimeaffectssequentialmemoryperformancebeginningatthelevelofvisualencoding AT kurikishinya processingtimeaffectssequentialmemoryperformancebeginningatthelevelofvisualencoding AT toyomuraakira processingtimeaffectssequentialmemoryperformancebeginningatthelevelofvisualencoding AT yokosawakoichi processingtimeaffectssequentialmemoryperformancebeginningatthelevelofvisualencoding |