Cargando…

Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data

Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in c...

Descripción completa

Detalles Bibliográficos
Autores principales: Tedijanto, Christine, Aragie, Solomon, Tadesse, Zerihun, Haile, Mahteme, Zeru, Taye, Nash, Scott D., Wittberg, Dionna M., Gwyn, Sarah, Martin, Diana L., Sturrock, Hugh J. W., Lietman, Thomas M., Keenan, Jeremy D., Arnold, Benjamin F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942265/
https://www.ncbi.nlm.nih.gov/pubmed/35275911
http://dx.doi.org/10.1371/journal.pntd.0010273
_version_ 1784673269345943552
author Tedijanto, Christine
Aragie, Solomon
Tadesse, Zerihun
Haile, Mahteme
Zeru, Taye
Nash, Scott D.
Wittberg, Dionna M.
Gwyn, Sarah
Martin, Diana L.
Sturrock, Hugh J. W.
Lietman, Thomas M.
Keenan, Jeremy D.
Arnold, Benjamin F.
author_facet Tedijanto, Christine
Aragie, Solomon
Tadesse, Zerihun
Haile, Mahteme
Zeru, Taye
Nash, Scott D.
Wittberg, Dionna M.
Gwyn, Sarah
Martin, Diana L.
Sturrock, Hugh J. W.
Lietman, Thomas M.
Keenan, Jeremy D.
Arnold, Benjamin F.
author_sort Tedijanto, Christine
collection PubMed
description Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R(2) = 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.
format Online
Article
Text
id pubmed-8942265
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89422652022-03-24 Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data Tedijanto, Christine Aragie, Solomon Tadesse, Zerihun Haile, Mahteme Zeru, Taye Nash, Scott D. Wittberg, Dionna M. Gwyn, Sarah Martin, Diana L. Sturrock, Hugh J. W. Lietman, Thomas M. Keenan, Jeremy D. Arnold, Benjamin F. PLoS Negl Trop Dis Research Article Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R(2) = 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Public Library of Science 2022-03-11 /pmc/articles/PMC8942265/ /pubmed/35275911 http://dx.doi.org/10.1371/journal.pntd.0010273 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Tedijanto, Christine
Aragie, Solomon
Tadesse, Zerihun
Haile, Mahteme
Zeru, Taye
Nash, Scott D.
Wittberg, Dionna M.
Gwyn, Sarah
Martin, Diana L.
Sturrock, Hugh J. W.
Lietman, Thomas M.
Keenan, Jeremy D.
Arnold, Benjamin F.
Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title_full Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title_fullStr Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title_full_unstemmed Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title_short Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
title_sort predicting future community-level ocular chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942265/
https://www.ncbi.nlm.nih.gov/pubmed/35275911
http://dx.doi.org/10.1371/journal.pntd.0010273
work_keys_str_mv AT tedijantochristine predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT aragiesolomon predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT tadessezerihun predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT hailemahteme predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT zerutaye predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT nashscottd predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT wittbergdionnam predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT gwynsarah predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT martindianal predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT sturrockhughjw predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT lietmanthomasm predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT keenanjeremyd predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata
AT arnoldbenjaminf predictingfuturecommunitylevelocularchlamydiatrachomatisinfectionprevalenceusingserologicalclinicalmolecularandgeospatialdata