Cargando…
The ability to classify patients based on gene-expression data varies by algorithm and performance metric
By classifying patients into subgroups, clinicians can provide more effective care than using a uniform approach for all patients. Such subgroups might include patients with a particular disease subtype, patients with a good (or poor) prognosis, or patients most (or least) likely to respond to a par...
Autores principales: | Piccolo, Stephen R., Mecham, Avery, Golightly, Nathan P., Johnson, Jérémie L., Miller, Dustin B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942277/ https://www.ncbi.nlm.nih.gov/pubmed/35275931 http://dx.doi.org/10.1371/journal.pcbi.1009926 |
Ejemplares similares
-
Generalization Performance of Quantum Metric Learning Classifiers
por: Kim, Jonathan, et al.
Publicado: (2022) -
Curated compendium of human transcriptional biomarker data
por: Golightly, Nathan P., et al.
Publicado: (2018) -
Classifiers and their Metrics Quantified
por: Brown, J. B.
Publicado: (2018) -
Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics
por: Rácz, Anita, et al.
Publicado: (2019) -
Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
por: Boughorbel, Sabri, et al.
Publicado: (2017)