Cargando…

From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries

As one of the most competitive candidates for the next-generation energy storage systems, the emerging rechargeable zinc metal battery (ZMB) is inevitably influenced by beyond-room-temperature conditions, resulting in inferior performances. Although much attention has been paid to evaluating the per...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Sailin, Zhang, Ruizhi, Mao, Jianfeng, Zhao, Yunlong, Cai, Qiong, Guo, Zaiping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942368/
https://www.ncbi.nlm.nih.gov/pubmed/35319992
http://dx.doi.org/10.1126/sciadv.abn5097
Descripción
Sumario:As one of the most competitive candidates for the next-generation energy storage systems, the emerging rechargeable zinc metal battery (ZMB) is inevitably influenced by beyond-room-temperature conditions, resulting in inferior performances. Although much attention has been paid to evaluating the performance of ZMBs under extreme temperatures in recent years, most academic electrolyte research has not provided adequate information about physical properties or practical testing protocols of their electrolytes, making it difficult to assess their true performance. The growing interest in ZMBs is calling for in-depth research on electrolyte behavior under harsh practical conditions, which has not been systematically reviewed yet. Hence, in this review, we first showcase the fundamentals behind the failure of ZMBs in terms of temperature influence and then present a comprehensive understanding of the current electrolyte strategies to improve battery performance at harsh temperatures. Last, we offer perspectives on the advance of ZMB electrolytes toward industrial application.