Cargando…

Local temporal Rac1-GTP nadirs and peaks restrict cell protrusions and retractions

Cells probe their microenvironment using membrane protrusion-retraction cycles. Spatiotemporal coordination of Rac1 and RhoA GTP-binding activities initiates and reinforces protrusions and retractions, but the control of their finite lifetime remains unclear. We examined the relations of Rac1 and Rh...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Jianjiang, Gong, Xiaowei, Strömblad, Staffan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942371/
https://www.ncbi.nlm.nih.gov/pubmed/35319996
http://dx.doi.org/10.1126/sciadv.abl3667
Descripción
Sumario:Cells probe their microenvironment using membrane protrusion-retraction cycles. Spatiotemporal coordination of Rac1 and RhoA GTP-binding activities initiates and reinforces protrusions and retractions, but the control of their finite lifetime remains unclear. We examined the relations of Rac1 and RhoA GTP-binding levels to key protrusion and retraction events, as well as to cell-ECM traction forces at physiologically relevant ECM stiffness. High RhoA-GTP preceded retractions and Rac1-GTP elevation before protrusions. Notable temporal Rac1-GTP nadirs and peaks occurred at the maximal edge velocity of local membrane protrusions and retractions, respectively, followed by declined edge velocity. Moreover, altered local Rac1-GTP consistently preceded similarly altered traction force. Local optogenetic Rac1-GTP perturbations defined a function of Rac1 in restricting protrusions and retractions and in promoting local traction force. Together, we show that Rac1 plays a fundamental role in restricting the size and durability of protrusions and retractions, plausibly in part through controlling traction forces.