Cargando…

MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X

Metallothioneins (MTs) are a group of low-molecular weight cysteine-rich proteins that play vital roles in oxidative stress, metal homeostasis, carcinogenesis and drug resistance. However, few studies have analyzed the roles of MTs in acute myeloid leukemia (AML). In this study, we revealed that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Xiangke, Xu, Zheng, Wei, Jia, Zhang, Yicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942499/
https://www.ncbi.nlm.nih.gov/pubmed/35316152
http://dx.doi.org/10.1080/15384047.2022.2054243
_version_ 1784673318311297024
author Xin, Xiangke
Xu, Zheng
Wei, Jia
Zhang, Yicheng
author_facet Xin, Xiangke
Xu, Zheng
Wei, Jia
Zhang, Yicheng
author_sort Xin, Xiangke
collection PubMed
description Metallothioneins (MTs) are a group of low-molecular weight cysteine-rich proteins that play vital roles in oxidative stress, metal homeostasis, carcinogenesis and drug resistance. However, few studies have analyzed the roles of MTs in acute myeloid leukemia (AML). In this study, we revealed that the expression of metallothionein1X (MT1X), a main isoform of MTs, was highly expressed and acted as a candidate of prognostic indicator in AML patients. In vitro cell function experiments verified that silencing MT1X inhibited the proliferation of AML cells, sensitized cells to doxorubicin, and increased their apoptosis. We also showed that the downregulation of MT1X expression suppressed nuclear factor-κB (NF-κB) signaling by reducing p65, p-IκB-α, and downstream effectors. Elevated p65 and MT1X levels were indicators in AML. Moreover, we revealed that miR-376a-3p had binding sites with 3ʹ-UTR of MT1X, suggesting that MT1X was negatively regulated by miR-376a-3p. Cell functional assay results indicated that miR-376a-3p overexpression significantly inhibited the proliferation, arrested the AML cells in the G0/G1 phase and induced cell apoptosis. The rescue experiments further confirmed that miR-376a-3p could reverse the promotion of MT1X overexpression on the progress of AML cells. Taken together, our results revealed that elevated MT1X expression might be involved in the mechanism underlying AML progression, indicating that the miR-376a/MT1X axis might serve as a promising novel target for the effective treatment of patients with AML.
format Online
Article
Text
id pubmed-8942499
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-89424992022-03-24 MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X Xin, Xiangke Xu, Zheng Wei, Jia Zhang, Yicheng Cancer Biol Ther Research Paper Metallothioneins (MTs) are a group of low-molecular weight cysteine-rich proteins that play vital roles in oxidative stress, metal homeostasis, carcinogenesis and drug resistance. However, few studies have analyzed the roles of MTs in acute myeloid leukemia (AML). In this study, we revealed that the expression of metallothionein1X (MT1X), a main isoform of MTs, was highly expressed and acted as a candidate of prognostic indicator in AML patients. In vitro cell function experiments verified that silencing MT1X inhibited the proliferation of AML cells, sensitized cells to doxorubicin, and increased their apoptosis. We also showed that the downregulation of MT1X expression suppressed nuclear factor-κB (NF-κB) signaling by reducing p65, p-IκB-α, and downstream effectors. Elevated p65 and MT1X levels were indicators in AML. Moreover, we revealed that miR-376a-3p had binding sites with 3ʹ-UTR of MT1X, suggesting that MT1X was negatively regulated by miR-376a-3p. Cell functional assay results indicated that miR-376a-3p overexpression significantly inhibited the proliferation, arrested the AML cells in the G0/G1 phase and induced cell apoptosis. The rescue experiments further confirmed that miR-376a-3p could reverse the promotion of MT1X overexpression on the progress of AML cells. Taken together, our results revealed that elevated MT1X expression might be involved in the mechanism underlying AML progression, indicating that the miR-376a/MT1X axis might serve as a promising novel target for the effective treatment of patients with AML. Taylor & Francis 2022-03-22 /pmc/articles/PMC8942499/ /pubmed/35316152 http://dx.doi.org/10.1080/15384047.2022.2054243 Text en © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Xin, Xiangke
Xu, Zheng
Wei, Jia
Zhang, Yicheng
MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title_full MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title_fullStr MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title_full_unstemmed MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title_short MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X
title_sort mir-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting mt1x
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942499/
https://www.ncbi.nlm.nih.gov/pubmed/35316152
http://dx.doi.org/10.1080/15384047.2022.2054243
work_keys_str_mv AT xinxiangke mir376a3pincreasescellapoptosisinacutemyeloidleukemiabytargetingmt1x
AT xuzheng mir376a3pincreasescellapoptosisinacutemyeloidleukemiabytargetingmt1x
AT weijia mir376a3pincreasescellapoptosisinacutemyeloidleukemiabytargetingmt1x
AT zhangyicheng mir376a3pincreasescellapoptosisinacutemyeloidleukemiabytargetingmt1x